Properties

Label 6975.g
Number of curves $4$
Conductor $6975$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6975.g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(31\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6975.g do not have complex multiplication.

Modular form 6975.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 4 q^{7} + 3 q^{8} + 4 q^{11} - 2 q^{13} - 4 q^{14} - q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 6975.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6975.g1 6975g3 \([1, -1, 1, -38255, -2863128]\) \(543538277281/1569375\) \(17876162109375\) \([2]\) \(24576\) \(1.4138\)  
6975.g2 6975g2 \([1, -1, 1, -3380, -3378]\) \(374805361/216225\) \(2462937890625\) \([2, 2]\) \(12288\) \(1.0672\)  
6975.g3 6975g1 \([1, -1, 1, -2255, 41622]\) \(111284641/465\) \(5296640625\) \([4]\) \(6144\) \(0.72066\) \(\Gamma_0(N)\)-optimal
6975.g4 6975g4 \([1, -1, 1, 13495, -37128]\) \(23862997439/13852815\) \(-157792220859375\) \([2]\) \(24576\) \(1.4138\)