Properties

Label 2-68450-1.1-c1-0-16
Degree $2$
Conductor $68450$
Sign $1$
Analytic cond. $546.576$
Root an. cond. $23.3789$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s + 2·6-s − 2·7-s + 8-s + 9-s + 2·12-s + 2·13-s − 2·14-s + 16-s + 6·17-s + 18-s − 2·19-s − 4·21-s + 2·24-s + 2·26-s − 4·27-s − 2·28-s − 6·29-s + 10·31-s + 32-s + 6·34-s + 36-s − 2·38-s + 4·39-s − 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.577·12-s + 0.554·13-s − 0.534·14-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 0.458·19-s − 0.872·21-s + 0.408·24-s + 0.392·26-s − 0.769·27-s − 0.377·28-s − 1.11·29-s + 1.79·31-s + 0.176·32-s + 1.02·34-s + 1/6·36-s − 0.324·38-s + 0.640·39-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68450\)    =    \(2 \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(546.576\)
Root analytic conductor: \(23.3789\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 68450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.930893755\)
\(L(\frac12)\) \(\approx\) \(5.930893755\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.21205625752531, −13.53742755593726, −13.36448418464851, −12.87606140298663, −12.22468622060044, −11.82199359601293, −11.27109327346146, −10.52980251285405, −10.06118220514135, −9.615722435441183, −9.066425220770185, −8.422135558375734, −8.010561411265991, −7.570490528757836, −6.775685817431505, −6.396787124930588, −5.724494965779151, −5.254048819025937, −4.447215765994622, −3.744891688462741, −3.401313985527390, −2.945180086774361, −2.262505901085463, −1.590563729683848, −0.6542036098171906, 0.6542036098171906, 1.590563729683848, 2.262505901085463, 2.945180086774361, 3.401313985527390, 3.744891688462741, 4.447215765994622, 5.254048819025937, 5.724494965779151, 6.396787124930588, 6.775685817431505, 7.570490528757836, 8.010561411265991, 8.422135558375734, 9.066425220770185, 9.615722435441183, 10.06118220514135, 10.52980251285405, 11.27109327346146, 11.82199359601293, 12.22468622060044, 12.87606140298663, 13.36448418464851, 13.53742755593726, 14.21205625752531

Graph of the $Z$-function along the critical line