Properties

Label 2-6664-1.1-c1-0-155
Degree $2$
Conductor $6664$
Sign $-1$
Analytic cond. $53.2123$
Root an. cond. $7.29467$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 9-s − 6·11-s − 2·13-s + 4·15-s − 17-s + 6·23-s − 25-s − 4·27-s − 10·29-s − 2·31-s − 12·33-s + 6·37-s − 4·39-s + 6·41-s − 8·43-s + 2·45-s − 2·51-s − 10·53-s − 12·55-s + 8·59-s − 14·61-s − 4·65-s + 4·67-s + 12·69-s + 2·71-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s + 1/3·9-s − 1.80·11-s − 0.554·13-s + 1.03·15-s − 0.242·17-s + 1.25·23-s − 1/5·25-s − 0.769·27-s − 1.85·29-s − 0.359·31-s − 2.08·33-s + 0.986·37-s − 0.640·39-s + 0.937·41-s − 1.21·43-s + 0.298·45-s − 0.280·51-s − 1.37·53-s − 1.61·55-s + 1.04·59-s − 1.79·61-s − 0.496·65-s + 0.488·67-s + 1.44·69-s + 0.237·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6664\)    =    \(2^{3} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(53.2123\)
Root analytic conductor: \(7.29467\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71743605773314064060517511453, −7.22320038345813934406313365840, −6.15587167996465714283741394082, −5.41901376085817111414682486932, −4.92852786911030460828356623060, −3.80276371358035318939394169571, −2.88205489232261764953541720461, −2.46005267455719907629170520175, −1.69352370897343893726020061854, 0, 1.69352370897343893726020061854, 2.46005267455719907629170520175, 2.88205489232261764953541720461, 3.80276371358035318939394169571, 4.92852786911030460828356623060, 5.41901376085817111414682486932, 6.15587167996465714283741394082, 7.22320038345813934406313365840, 7.71743605773314064060517511453

Graph of the $Z$-function along the critical line