Properties

Label 2-66066-1.1-c1-0-47
Degree $2$
Conductor $66066$
Sign $-1$
Analytic cond. $527.539$
Root an. cond. $22.9682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s − 12-s + 13-s + 14-s + 16-s + 2·17-s − 18-s − 4·19-s + 21-s − 4·23-s + 24-s − 5·25-s − 26-s − 27-s − 28-s + 10·29-s + 2·31-s − 32-s − 2·34-s + 36-s + 8·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.917·19-s + 0.218·21-s − 0.834·23-s + 0.204·24-s − 25-s − 0.196·26-s − 0.192·27-s − 0.188·28-s + 1.85·29-s + 0.359·31-s − 0.176·32-s − 0.342·34-s + 1/6·36-s + 1.31·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66066\)    =    \(2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(527.539\)
Root analytic conductor: \(22.9682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 66066,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.48881492926551, −13.97103552047473, −13.38896388138846, −12.84462772270512, −12.20791707603471, −12.05703860132792, −11.23691726702358, −11.00756573592493, −10.23915180411900, −9.955290944368863, −9.531357281838475, −8.808170157941690, −8.225489460910975, −7.868871189236362, −7.254069914758283, −6.484953629747495, −6.188502657750104, −5.823966435261240, −4.890897136691111, −4.363812768570230, −3.728910802138176, −2.934941004520474, −2.323202826519019, −1.524833864243290, −0.7978887691945390, 0, 0.7978887691945390, 1.524833864243290, 2.323202826519019, 2.934941004520474, 3.728910802138176, 4.363812768570230, 4.890897136691111, 5.823966435261240, 6.188502657750104, 6.484953629747495, 7.254069914758283, 7.868871189236362, 8.225489460910975, 8.808170157941690, 9.531357281838475, 9.955290944368863, 10.23915180411900, 11.00756573592493, 11.23691726702358, 12.05703860132792, 12.20791707603471, 12.84462772270512, 13.38896388138846, 13.97103552047473, 14.48881492926551

Graph of the $Z$-function along the critical line