Properties

Label 2-46800-1.1-c1-0-133
Degree $2$
Conductor $46800$
Sign $-1$
Analytic cond. $373.699$
Root an. cond. $19.3313$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 4·11-s − 13-s + 2·17-s + 8·19-s − 6·29-s + 4·31-s + 2·37-s + 10·41-s + 4·43-s − 8·47-s + 9·49-s − 10·53-s + 4·59-s − 2·61-s − 16·67-s − 8·71-s − 2·73-s − 16·77-s − 8·79-s − 12·83-s − 14·89-s − 4·91-s − 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.51·7-s − 1.20·11-s − 0.277·13-s + 0.485·17-s + 1.83·19-s − 1.11·29-s + 0.718·31-s + 0.328·37-s + 1.56·41-s + 0.609·43-s − 1.16·47-s + 9/7·49-s − 1.37·53-s + 0.520·59-s − 0.256·61-s − 1.95·67-s − 0.949·71-s − 0.234·73-s − 1.82·77-s − 0.900·79-s − 1.31·83-s − 1.48·89-s − 0.419·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46800\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(373.699\)
Root analytic conductor: \(19.3313\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 46800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.78150981510082, −14.33207033752309, −13.95794353751686, −13.33151228156075, −12.84503381427301, −12.22508725778471, −11.66586130516652, −11.22097355852391, −10.89691057712667, −10.09199024889698, −9.761456358082852, −9.083048128148338, −8.431776746274967, −7.765669496041967, −7.632496813922926, −7.173864730491024, −6.028754383056255, −5.618127862626301, −5.059845841449695, −4.643091966861216, −3.944280097109456, −2.955459565065836, −2.650537586404838, −1.604992353444383, −1.169671565968840, 0, 1.169671565968840, 1.604992353444383, 2.650537586404838, 2.955459565065836, 3.944280097109456, 4.643091966861216, 5.059845841449695, 5.618127862626301, 6.028754383056255, 7.173864730491024, 7.632496813922926, 7.765669496041967, 8.431776746274967, 9.083048128148338, 9.761456358082852, 10.09199024889698, 10.89691057712667, 11.22097355852391, 11.66586130516652, 12.22508725778471, 12.84503381427301, 13.33151228156075, 13.95794353751686, 14.33207033752309, 14.78150981510082

Graph of the $Z$-function along the critical line