Properties

Label 46800.fd
Number of curves $4$
Conductor $46800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 46800.fd have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 46800.fd do not have complex multiplication.

Modular form 46800.2.a.fd

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{7} - 4 q^{11} - q^{13} + 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 46800.fd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46800.fd1 46800dk4 \([0, 0, 0, -74662275, 248313253250]\) \(986551739719628473/111045168\) \(5180923358208000000\) \([2]\) \(3932160\) \(3.0153\)  
46800.fd2 46800dk3 \([0, 0, 0, -8422275, -3190810750]\) \(1416134368422073/725251155408\) \(33837317906715648000000\) \([2]\) \(3932160\) \(3.0153\)  
46800.fd3 46800dk2 \([0, 0, 0, -4678275, 3859141250]\) \(242702053576633/2554695936\) \(119191893590016000000\) \([2, 2]\) \(1966080\) \(2.6687\)  
46800.fd4 46800dk1 \([0, 0, 0, -70275, 149701250]\) \(-822656953/207028224\) \(-9659108818944000000\) \([2]\) \(983040\) \(2.3221\) \(\Gamma_0(N)\)-optimal