Properties

Label 2-38088-1.1-c1-0-17
Degree $2$
Conductor $38088$
Sign $-1$
Analytic cond. $304.134$
Root an. cond. $17.4394$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s + 2·11-s + 6·13-s + 6·19-s − 25-s − 6·29-s − 4·31-s + 8·35-s + 2·37-s − 6·41-s + 2·43-s − 4·47-s + 9·49-s + 14·53-s − 4·55-s + 4·59-s − 10·61-s − 12·65-s − 2·67-s − 4·71-s + 2·73-s − 8·77-s + 12·79-s + 6·83-s − 12·89-s − 24·91-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s + 0.603·11-s + 1.66·13-s + 1.37·19-s − 1/5·25-s − 1.11·29-s − 0.718·31-s + 1.35·35-s + 0.328·37-s − 0.937·41-s + 0.304·43-s − 0.583·47-s + 9/7·49-s + 1.92·53-s − 0.539·55-s + 0.520·59-s − 1.28·61-s − 1.48·65-s − 0.244·67-s − 0.474·71-s + 0.234·73-s − 0.911·77-s + 1.35·79-s + 0.658·83-s − 1.27·89-s − 2.51·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38088 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38088\)    =    \(2^{3} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(304.134\)
Root analytic conductor: \(17.4394\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 38088,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.15837203558938, −14.77270742797632, −13.83785523839344, −13.47104539285586, −13.18646927722511, −12.39959748205317, −11.98282538853209, −11.48022698694455, −10.98357697935842, −10.39475063265644, −9.671585064189162, −9.270680712463015, −8.824434253820599, −8.084618851597953, −7.574158848303751, −6.874736385145476, −6.545421749165378, −5.742467956799258, −5.448903050615900, −4.266255078319839, −3.711467459241115, −3.504407001924212, −2.825982857487279, −1.678783603607788, −0.8846213970833806, 0, 0.8846213970833806, 1.678783603607788, 2.825982857487279, 3.504407001924212, 3.711467459241115, 4.266255078319839, 5.448903050615900, 5.742467956799258, 6.545421749165378, 6.874736385145476, 7.574158848303751, 8.084618851597953, 8.824434253820599, 9.270680712463015, 9.671585064189162, 10.39475063265644, 10.98357697935842, 11.48022698694455, 11.98282538853209, 12.39959748205317, 13.18646927722511, 13.47104539285586, 13.83785523839344, 14.77270742797632, 15.15837203558938

Graph of the $Z$-function along the critical line