Properties

Label 2-372645-1.1-c1-0-114
Degree $2$
Conductor $372645$
Sign $-1$
Analytic cond. $2975.58$
Root an. cond. $54.5489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s + 3·8-s − 10-s + 6·11-s − 16-s − 4·17-s − 4·19-s − 20-s − 6·22-s + 25-s + 4·29-s − 5·32-s + 4·34-s − 8·37-s + 4·38-s + 3·40-s + 6·41-s + 2·43-s − 6·44-s − 2·47-s − 50-s − 6·53-s + 6·55-s − 4·58-s + 8·59-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s + 1.06·8-s − 0.316·10-s + 1.80·11-s − 1/4·16-s − 0.970·17-s − 0.917·19-s − 0.223·20-s − 1.27·22-s + 1/5·25-s + 0.742·29-s − 0.883·32-s + 0.685·34-s − 1.31·37-s + 0.648·38-s + 0.474·40-s + 0.937·41-s + 0.304·43-s − 0.904·44-s − 0.291·47-s − 0.141·50-s − 0.824·53-s + 0.809·55-s − 0.525·58-s + 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(372645\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2975.58\)
Root analytic conductor: \(54.5489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 372645,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72507229191594, −12.26673828420990, −11.81957790664271, −11.18690835692489, −10.85952258729654, −10.42461377260514, −9.880140953980049, −9.432018078560222, −9.111565195032904, −8.727031839885643, −8.365830630831560, −7.840983787388383, −7.126461356753585, −6.730227331702308, −6.415763579440404, −5.857361553829834, −5.187705168453206, −4.642336255223089, −4.236659037816804, −3.827773940985381, −3.223182984322066, −2.341839373570623, −1.885635909739961, −1.322500225637885, −0.7688444245122103, 0, 0.7688444245122103, 1.322500225637885, 1.885635909739961, 2.341839373570623, 3.223182984322066, 3.827773940985381, 4.236659037816804, 4.642336255223089, 5.187705168453206, 5.857361553829834, 6.415763579440404, 6.730227331702308, 7.126461356753585, 7.840983787388383, 8.365830630831560, 8.727031839885643, 9.111565195032904, 9.432018078560222, 9.880140953980049, 10.42461377260514, 10.85952258729654, 11.18690835692489, 11.81957790664271, 12.26673828420990, 12.72507229191594

Graph of the $Z$-function along the critical line