Properties

Label 2-28665-1.1-c1-0-6
Degree $2$
Conductor $28665$
Sign $1$
Analytic cond. $228.891$
Root an. cond. $15.1291$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s + 3·8-s − 10-s − 13-s − 16-s + 4·17-s + 2·19-s − 20-s − 4·23-s + 25-s + 26-s − 10·29-s + 2·31-s − 5·32-s − 4·34-s − 8·37-s − 2·38-s + 3·40-s + 6·41-s − 10·43-s + 4·46-s − 6·47-s − 50-s + 52-s − 10·53-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s + 1.06·8-s − 0.316·10-s − 0.277·13-s − 1/4·16-s + 0.970·17-s + 0.458·19-s − 0.223·20-s − 0.834·23-s + 1/5·25-s + 0.196·26-s − 1.85·29-s + 0.359·31-s − 0.883·32-s − 0.685·34-s − 1.31·37-s − 0.324·38-s + 0.474·40-s + 0.937·41-s − 1.52·43-s + 0.589·46-s − 0.875·47-s − 0.141·50-s + 0.138·52-s − 1.37·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28665\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(228.891\)
Root analytic conductor: \(15.1291\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 28665,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8868570934\)
\(L(\frac12)\) \(\approx\) \(0.8868570934\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.12663327873125, −14.48990000333163, −14.24224824469563, −13.61363984257624, −13.03691810840769, −12.70737014930019, −11.85072789306072, −11.48139637346861, −10.63781359841721, −10.18586743992941, −9.738234041402643, −9.311801918450122, −8.719771942652739, −8.063464448513891, −7.635170571779596, −7.082620355581284, −6.272836190654688, −5.545729821873844, −5.150060024720762, −4.411403707478365, −3.648696791824027, −3.070183088069555, −1.896868405751286, −1.509959524309562, −0.4194876147148494, 0.4194876147148494, 1.509959524309562, 1.896868405751286, 3.070183088069555, 3.648696791824027, 4.411403707478365, 5.150060024720762, 5.545729821873844, 6.272836190654688, 7.082620355581284, 7.635170571779596, 8.063464448513891, 8.719771942652739, 9.311801918450122, 9.738234041402643, 10.18586743992941, 10.63781359841721, 11.48139637346861, 11.85072789306072, 12.70737014930019, 13.03691810840769, 13.61363984257624, 14.24224824469563, 14.48990000333163, 15.12663327873125

Graph of the $Z$-function along the critical line