Properties

Label 2-282240-1.1-c1-0-131
Degree $2$
Conductor $282240$
Sign $1$
Analytic cond. $2253.69$
Root an. cond. $47.4731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·11-s + 4·17-s + 4·19-s + 6·23-s + 25-s − 6·29-s + 8·31-s + 2·37-s − 2·43-s + 6·53-s + 4·55-s − 4·59-s − 8·61-s + 2·67-s + 6·71-s + 2·73-s − 8·79-s − 4·83-s + 4·85-s − 12·89-s + 4·95-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.20·11-s + 0.970·17-s + 0.917·19-s + 1.25·23-s + 1/5·25-s − 1.11·29-s + 1.43·31-s + 0.328·37-s − 0.304·43-s + 0.824·53-s + 0.539·55-s − 0.520·59-s − 1.02·61-s + 0.244·67-s + 0.712·71-s + 0.234·73-s − 0.900·79-s − 0.439·83-s + 0.433·85-s − 1.27·89-s + 0.410·95-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(282240\)    =    \(2^{7} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(2253.69\)
Root analytic conductor: \(47.4731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 282240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.487222689\)
\(L(\frac12)\) \(\approx\) \(4.487222689\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78079722439967, −12.16779071570928, −11.86368656529679, −11.43953875018147, −10.93265887622185, −10.44675376466746, −9.780012827626585, −9.606690675380999, −9.134910815232191, −8.649425045586683, −8.096688855436615, −7.574239095429922, −7.018583775108319, −6.735341194131344, −6.034385036671612, −5.687020957715140, −5.171552064113295, −4.581545951467363, −4.094607593647430, −3.349199388559130, −3.107512630218618, −2.395407605924173, −1.593558818583893, −1.183487126501197, −0.6238611576541841, 0.6238611576541841, 1.183487126501197, 1.593558818583893, 2.395407605924173, 3.107512630218618, 3.349199388559130, 4.094607593647430, 4.581545951467363, 5.171552064113295, 5.687020957715140, 6.034385036671612, 6.735341194131344, 7.018583775108319, 7.574239095429922, 8.096688855436615, 8.649425045586683, 9.134910815232191, 9.606690675380999, 9.780012827626585, 10.44675376466746, 10.93265887622185, 11.43953875018147, 11.86368656529679, 12.16779071570928, 12.78079722439967

Graph of the $Z$-function along the critical line