Properties

Label 2-281775-1.1-c1-0-18
Degree $2$
Conductor $281775$
Sign $-1$
Analytic cond. $2249.98$
Root an. cond. $47.4340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 7-s + 9-s − 2·11-s + 2·12-s − 13-s + 4·16-s − 4·19-s − 21-s − 4·23-s − 27-s − 2·28-s − 8·29-s + 2·33-s − 2·36-s − 3·37-s + 39-s + 6·41-s + 8·43-s + 4·44-s − 6·47-s − 4·48-s − 6·49-s + 2·52-s − 10·53-s + 4·57-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 0.377·7-s + 1/3·9-s − 0.603·11-s + 0.577·12-s − 0.277·13-s + 16-s − 0.917·19-s − 0.218·21-s − 0.834·23-s − 0.192·27-s − 0.377·28-s − 1.48·29-s + 0.348·33-s − 1/3·36-s − 0.493·37-s + 0.160·39-s + 0.937·41-s + 1.21·43-s + 0.603·44-s − 0.875·47-s − 0.577·48-s − 6/7·49-s + 0.277·52-s − 1.37·53-s + 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(281775\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2249.98\)
Root analytic conductor: \(47.4340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 281775,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 2 T + p T^{2} \) 1.11.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 15 T + p T^{2} \) 1.61.p
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93890871191075, −12.54800637196863, −12.18445770024644, −11.62158530871489, −10.99649073565352, −10.68297309399928, −10.36381034429015, −9.623608219516956, −9.318783716766904, −8.984930313487925, −8.165978567006046, −7.842998781439163, −7.624293238676815, −6.831144157525031, −6.167920068317849, −5.876513049227170, −5.327585032276014, −4.778586590722342, −4.473554726199609, −3.947470988380912, −3.348362928927160, −2.701482594410351, −1.853763052641499, −1.513720431016438, −0.4884526492809938, 0, 0.4884526492809938, 1.513720431016438, 1.853763052641499, 2.701482594410351, 3.348362928927160, 3.947470988380912, 4.473554726199609, 4.778586590722342, 5.327585032276014, 5.876513049227170, 6.167920068317849, 6.831144157525031, 7.624293238676815, 7.842998781439163, 8.165978567006046, 8.984930313487925, 9.318783716766904, 9.623608219516956, 10.36381034429015, 10.68297309399928, 10.99649073565352, 11.62158530871489, 12.18445770024644, 12.54800637196863, 12.93890871191075

Graph of the $Z$-function along the critical line