Properties

Label 2-252e2-1.1-c1-0-24
Degree $2$
Conductor $63504$
Sign $-1$
Analytic cond. $507.081$
Root an. cond. $22.5184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 6·11-s + 13-s + 3·17-s + 2·19-s − 6·23-s + 4·25-s + 9·29-s − 10·31-s − 7·37-s + 6·41-s + 4·43-s − 6·47-s + 6·53-s + 18·55-s + 6·59-s − 11·61-s − 3·65-s − 2·67-s + 12·71-s + 7·73-s − 2·79-s − 6·83-s − 9·85-s + 3·89-s − 6·95-s − 14·97-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.80·11-s + 0.277·13-s + 0.727·17-s + 0.458·19-s − 1.25·23-s + 4/5·25-s + 1.67·29-s − 1.79·31-s − 1.15·37-s + 0.937·41-s + 0.609·43-s − 0.875·47-s + 0.824·53-s + 2.42·55-s + 0.781·59-s − 1.40·61-s − 0.372·65-s − 0.244·67-s + 1.42·71-s + 0.819·73-s − 0.225·79-s − 0.658·83-s − 0.976·85-s + 0.317·89-s − 0.615·95-s − 1.42·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63504\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(507.081\)
Root analytic conductor: \(22.5184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 63504,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.56462404788048, −13.86160907540794, −13.66331195230807, −12.79902977151397, −12.37058951876398, −12.17102694175399, −11.44806895331762, −10.88173955576624, −10.62030252463516, −9.955438177908243, −9.500230981300184, −8.552177149195855, −8.272099281116087, −7.784800364450164, −7.402970858459258, −6.864668219619294, −5.986544564210616, −5.433963050227389, −5.011102159539594, −4.232641820064368, −3.750504334942809, −3.123952090635235, −2.578815144350263, −1.715277664472532, −0.6828489772743290, 0, 0.6828489772743290, 1.715277664472532, 2.578815144350263, 3.123952090635235, 3.750504334942809, 4.232641820064368, 5.011102159539594, 5.433963050227389, 5.986544564210616, 6.864668219619294, 7.402970858459258, 7.784800364450164, 8.272099281116087, 8.552177149195855, 9.500230981300184, 9.955438177908243, 10.62030252463516, 10.88173955576624, 11.44806895331762, 12.17102694175399, 12.37058951876398, 12.79902977151397, 13.66331195230807, 13.86160907540794, 14.56462404788048

Graph of the $Z$-function along the critical line