Properties

Label 2-19110-1.1-c1-0-15
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s − 4·11-s + 12-s − 13-s − 15-s + 16-s + 6·17-s + 18-s + 4·19-s − 20-s − 4·22-s − 8·23-s + 24-s + 25-s − 26-s + 27-s − 10·29-s − 30-s + 32-s − 4·33-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.277·13-s − 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.852·22-s − 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 1.85·29-s − 0.182·30-s + 0.176·32-s − 0.696·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.606032422\)
\(L(\frac12)\) \(\approx\) \(3.606032422\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.66075382693484, −15.14284518432649, −14.51900778352019, −14.12445126692240, −13.66039533275035, −12.92485772610442, −12.50799686424913, −12.07246509428157, −11.35535292058912, −10.80632537028046, −10.12421305843508, −9.656810329346160, −9.036915061513299, −7.926118273243647, −7.743603137171598, −7.506807951828579, −6.435272216091755, −5.684335548851780, −5.282412623656170, −4.535550377995135, −3.641742851397186, −3.403014495492179, −2.477772322445215, −1.875409607697586, −0.6641227802026693, 0.6641227802026693, 1.875409607697586, 2.477772322445215, 3.403014495492179, 3.641742851397186, 4.535550377995135, 5.282412623656170, 5.684335548851780, 6.435272216091755, 7.506807951828579, 7.743603137171598, 7.926118273243647, 9.036915061513299, 9.656810329346160, 10.12421305843508, 10.80632537028046, 11.35535292058912, 12.07246509428157, 12.50799686424913, 12.92485772610442, 13.66039533275035, 14.12445126692240, 14.51900778352019, 15.14284518432649, 15.66075382693484

Graph of the $Z$-function along the critical line