Properties

Label 2-187200-1.1-c1-0-125
Degree $2$
Conductor $187200$
Sign $-1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 4·11-s − 13-s − 8·23-s − 8·29-s + 4·31-s + 6·37-s − 12·41-s − 8·43-s − 4·47-s + 9·49-s + 4·59-s + 2·61-s − 8·67-s + 4·71-s + 10·73-s + 16·77-s − 4·79-s − 12·83-s + 12·89-s + 4·91-s − 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.20·11-s − 0.277·13-s − 1.66·23-s − 1.48·29-s + 0.718·31-s + 0.986·37-s − 1.87·41-s − 1.21·43-s − 0.583·47-s + 9/7·49-s + 0.520·59-s + 0.256·61-s − 0.977·67-s + 0.474·71-s + 1.17·73-s + 1.82·77-s − 0.450·79-s − 1.31·83-s + 1.27·89-s + 0.419·91-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21480595417329, −13.02481246030065, −12.51340615527087, −11.97328536233985, −11.56610079339296, −11.01028033209367, −10.26467691831439, −10.00248756030727, −9.832249866476828, −9.168948204578630, −8.580412276624609, −8.020547822891057, −7.696785149898302, −7.046610182094693, −6.522346232473321, −6.173504898355766, −5.519255690463935, −5.182617445092504, −4.423755889225300, −3.831208917386786, −3.311711419800548, −2.852696512960852, −2.204706305291929, −1.667457413709754, −0.4886908325364618, 0, 0.4886908325364618, 1.667457413709754, 2.204706305291929, 2.852696512960852, 3.311711419800548, 3.831208917386786, 4.423755889225300, 5.182617445092504, 5.519255690463935, 6.173504898355766, 6.522346232473321, 7.046610182094693, 7.696785149898302, 8.020547822891057, 8.580412276624609, 9.168948204578630, 9.832249866476828, 10.00248756030727, 10.26467691831439, 11.01028033209367, 11.56610079339296, 11.97328536233985, 12.51340615527087, 13.02481246030065, 13.21480595417329

Graph of the $Z$-function along the critical line