Properties

Label 2-14976-1.1-c1-0-17
Degree $2$
Conductor $14976$
Sign $-1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 4·11-s + 13-s + 4·17-s + 6·19-s − 5·25-s − 6·29-s + 4·31-s + 6·37-s − 6·41-s − 4·43-s + 8·47-s + 9·49-s + 6·53-s − 12·59-s + 10·61-s − 2·67-s + 12·71-s − 10·73-s + 16·77-s − 10·79-s − 4·83-s + 10·89-s − 4·91-s + 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.20·11-s + 0.277·13-s + 0.970·17-s + 1.37·19-s − 25-s − 1.11·29-s + 0.718·31-s + 0.986·37-s − 0.937·41-s − 0.609·43-s + 1.16·47-s + 9/7·49-s + 0.824·53-s − 1.56·59-s + 1.28·61-s − 0.244·67-s + 1.42·71-s − 1.17·73-s + 1.82·77-s − 1.12·79-s − 0.439·83-s + 1.05·89-s − 0.419·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.19142510940455, −15.80941546060828, −15.46108627283709, −14.72599051244762, −13.95272685462702, −13.34258554015124, −13.21132837111455, −12.43620365332295, −11.90594063108662, −11.35102846145944, −10.45476196383839, −10.03573023712802, −9.625322251124933, −9.038387825204136, −8.134206435233118, −7.617781200213570, −7.107059617069757, −6.273628698658621, −5.663683948914555, −5.298261741697956, −4.226542561895984, −3.395601039290671, −3.058628778241201, −2.190198983630017, −0.9761159537660773, 0, 0.9761159537660773, 2.190198983630017, 3.058628778241201, 3.395601039290671, 4.226542561895984, 5.298261741697956, 5.663683948914555, 6.273628698658621, 7.107059617069757, 7.617781200213570, 8.134206435233118, 9.038387825204136, 9.625322251124933, 10.03573023712802, 10.45476196383839, 11.35102846145944, 11.90594063108662, 12.43620365332295, 13.21132837111455, 13.34258554015124, 13.95272685462702, 14.72599051244762, 15.46108627283709, 15.80941546060828, 16.19142510940455

Graph of the $Z$-function along the critical line