Properties

Label 2-148720-1.1-c1-0-49
Degree $2$
Conductor $148720$
Sign $-1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 2·7-s + 9-s − 11-s + 2·15-s − 3·17-s + 5·19-s + 4·21-s + 6·23-s + 25-s − 4·27-s − 6·29-s + 2·31-s − 2·33-s + 2·35-s − 5·37-s − 9·41-s + 43-s + 45-s − 3·47-s − 3·49-s − 6·51-s − 55-s + 10·57-s − 12·59-s + 8·61-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.301·11-s + 0.516·15-s − 0.727·17-s + 1.14·19-s + 0.872·21-s + 1.25·23-s + 1/5·25-s − 0.769·27-s − 1.11·29-s + 0.359·31-s − 0.348·33-s + 0.338·35-s − 0.821·37-s − 1.40·41-s + 0.152·43-s + 0.149·45-s − 0.437·47-s − 3/7·49-s − 0.840·51-s − 0.134·55-s + 1.32·57-s − 1.56·59-s + 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.65159143113804, −13.36261346205287, −12.75515513946526, −12.26176031842179, −11.54504506817780, −11.17776645442811, −10.83843213335171, −10.03773521665810, −9.696686282852094, −9.097390259603736, −8.867679628103982, −8.184363933916484, −7.963728042283433, −7.261183051902639, −6.920008971796381, −6.243677081336584, −5.479927956602919, −5.091639085825570, −4.694980898507088, −3.791807652933643, −3.363292431148068, −2.841029593017837, −2.190930573662104, −1.735964668646830, −1.081898142370463, 0, 1.081898142370463, 1.735964668646830, 2.190930573662104, 2.841029593017837, 3.363292431148068, 3.791807652933643, 4.694980898507088, 5.091639085825570, 5.479927956602919, 6.243677081336584, 6.920008971796381, 7.261183051902639, 7.963728042283433, 8.184363933916484, 8.867679628103982, 9.097390259603736, 9.696686282852094, 10.03773521665810, 10.83843213335171, 11.17776645442811, 11.54504506817780, 12.26176031842179, 12.75515513946526, 13.36261346205287, 13.65159143113804

Graph of the $Z$-function along the critical line