Properties

Label 148720.bx
Number of curves $2$
Conductor $148720$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 148720.bx have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 148720.bx do not have complex multiplication.

Modular form 148720.2.a.bx

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{5} + 2 q^{7} + q^{9} - q^{11} + 2 q^{15} - 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 148720.bx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148720.bx1 148720y1 \([0, -1, 0, -301045, -63543975]\) \(-2441851961344/3020875\) \(-3732783779296000\) \([]\) \(1161216\) \(1.8975\) \(\Gamma_0(N)\)-optimal
148720.bx2 148720y2 \([0, -1, 0, 401995, -295160503]\) \(5814126903296/33794921875\) \(-41759138063500000000\) \([]\) \(3483648\) \(2.4468\)