Properties

Label 2-12138-1.1-c1-0-3
Degree $2$
Conductor $12138$
Sign $1$
Analytic cond. $96.9224$
Root an. cond. $9.84491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2·5-s + 6-s + 7-s − 8-s + 9-s − 2·10-s − 6·11-s − 12-s + 6·13-s − 14-s − 2·15-s + 16-s − 18-s − 6·19-s + 2·20-s − 21-s + 6·22-s + 6·23-s + 24-s − 25-s − 6·26-s − 27-s + 28-s − 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.632·10-s − 1.80·11-s − 0.288·12-s + 1.66·13-s − 0.267·14-s − 0.516·15-s + 1/4·16-s − 0.235·18-s − 1.37·19-s + 0.447·20-s − 0.218·21-s + 1.27·22-s + 1.25·23-s + 0.204·24-s − 1/5·25-s − 1.17·26-s − 0.192·27-s + 0.188·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12138\)    =    \(2 \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(96.9224\)
Root analytic conductor: \(9.84491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 12138,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.251465574\)
\(L(\frac12)\) \(\approx\) \(1.251465574\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.33841961849884, −15.92907981825175, −15.36161854971024, −14.93623395916552, −13.91514616264390, −13.40500110090545, −12.99927505283689, −12.46257199188280, −11.45775970084466, −11.00403151875648, −10.60144212996990, −10.14719137385119, −9.453632793523084, −8.567181470093894, −8.358028288834180, −7.563382016851226, −6.724833575645874, −6.251896762624331, −5.492024808294301, −5.153251221419902, −4.128224016938423, −3.140451022927734, −2.247247372006080, −1.621905321313937, −0.5879888441093972, 0.5879888441093972, 1.621905321313937, 2.247247372006080, 3.140451022927734, 4.128224016938423, 5.153251221419902, 5.492024808294301, 6.251896762624331, 6.724833575645874, 7.563382016851226, 8.358028288834180, 8.567181470093894, 9.453632793523084, 10.14719137385119, 10.60144212996990, 11.00403151875648, 11.45775970084466, 12.46257199188280, 12.99927505283689, 13.40500110090545, 13.91514616264390, 14.93623395916552, 15.36161854971024, 15.92907981825175, 16.33841961849884

Graph of the $Z$-function along the critical line