Properties

Label 2-116032-1.1-c1-0-28
Degree $2$
Conductor $116032$
Sign $-1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s − 4·11-s + 4·17-s + 2·19-s − 4·23-s − 5·25-s − 10·29-s + 6·31-s + 37-s + 6·41-s − 4·43-s + 12·47-s + 6·53-s − 2·59-s + 12·61-s + 12·67-s − 8·71-s − 2·73-s − 12·79-s + 9·81-s − 16·83-s − 12·89-s + 8·97-s + 12·99-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 9-s − 1.20·11-s + 0.970·17-s + 0.458·19-s − 0.834·23-s − 25-s − 1.85·29-s + 1.07·31-s + 0.164·37-s + 0.937·41-s − 0.609·43-s + 1.75·47-s + 0.824·53-s − 0.260·59-s + 1.53·61-s + 1.46·67-s − 0.949·71-s − 0.234·73-s − 1.35·79-s + 81-s − 1.75·83-s − 1.27·89-s + 0.812·97-s + 1.20·99-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.79225434795035, −13.47402642484270, −12.84587874635087, −12.42533251786329, −11.83226306658983, −11.40325502191824, −11.08817275623941, −10.29772280646059, −9.988641091233358, −9.569199099117298, −8.862080953363255, −8.317342033141410, −7.973259438914570, −7.411971976591129, −7.073462649293970, −5.996879292304070, −5.723400510101109, −5.500439013382416, −4.748680140036517, −3.954233093936327, −3.587288311159965, −2.701125448525109, −2.491167922436032, −1.653340035383132, −0.7191090365428717, 0, 0.7191090365428717, 1.653340035383132, 2.491167922436032, 2.701125448525109, 3.587288311159965, 3.954233093936327, 4.748680140036517, 5.500439013382416, 5.723400510101109, 5.996879292304070, 7.073462649293970, 7.411971976591129, 7.973259438914570, 8.317342033141410, 8.862080953363255, 9.569199099117298, 9.988641091233358, 10.29772280646059, 11.08817275623941, 11.40325502191824, 11.83226306658983, 12.42533251786329, 12.84587874635087, 13.47402642484270, 13.79225434795035

Graph of the $Z$-function along the critical line