Properties

Label 2-10710-1.1-c1-0-8
Degree $2$
Conductor $10710$
Sign $1$
Analytic cond. $85.5197$
Root an. cond. $9.24769$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s + 2·11-s + 6·13-s + 14-s + 16-s − 17-s − 4·19-s + 20-s − 2·22-s + 4·23-s + 25-s − 6·26-s − 28-s + 10·29-s − 32-s + 34-s − 35-s + 12·37-s + 4·38-s − 40-s + 6·41-s − 6·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s − 0.353·8-s − 0.316·10-s + 0.603·11-s + 1.66·13-s + 0.267·14-s + 1/4·16-s − 0.242·17-s − 0.917·19-s + 0.223·20-s − 0.426·22-s + 0.834·23-s + 1/5·25-s − 1.17·26-s − 0.188·28-s + 1.85·29-s − 0.176·32-s + 0.171·34-s − 0.169·35-s + 1.97·37-s + 0.648·38-s − 0.158·40-s + 0.937·41-s − 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(85.5197\)
Root analytic conductor: \(9.24769\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10710,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.926644832\)
\(L(\frac12)\) \(\approx\) \(1.926644832\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.52953118835560, −16.14976482426960, −15.50080621307238, −14.94859476451983, −14.26176050955138, −13.68677012448713, −12.94128184922441, −12.72008599543673, −11.65100723562102, −11.27113066240901, −10.66023964058658, −10.08745507732870, −9.424674123424087, −8.847026752445764, −8.416952685819067, −7.747966331826732, −6.653339202057954, −6.445876281355992, −5.932469297168671, −4.844722048239507, −4.086561287676270, −3.235032836918034, −2.500764532914791, −1.468990600130451, −0.7877732800705842, 0.7877732800705842, 1.468990600130451, 2.500764532914791, 3.235032836918034, 4.086561287676270, 4.844722048239507, 5.932469297168671, 6.445876281355992, 6.653339202057954, 7.747966331826732, 8.416952685819067, 8.847026752445764, 9.424674123424087, 10.08745507732870, 10.66023964058658, 11.27113066240901, 11.65100723562102, 12.72008599543673, 12.94128184922441, 13.68677012448713, 14.26176050955138, 14.94859476451983, 15.50080621307238, 16.14976482426960, 16.52953118835560

Graph of the $Z$-function along the critical line