Learn more

Refine search


Results (1-50 of 17197 matches)

Next   displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
10000.a.160000.1 10000.a \( 2^{4} \cdot 5^{4} \) $0$ $\Z/5\Z$ \(\Q \times \Q\) $[612,11325,1916325,20000]$ $[612,8056,110704,712928,160000]$ $[\frac{335364543972}{625},\frac{7213296078}{625},\frac{161966871}{625}]$ $y^2 + xy = x^6 - 2x^5 + 2x^4 - x^3 + 2x^2 - 3x + 2$
10000.b.800000.1 10000.b \( 2^{4} \cdot 5^{4} \) $0$ $\Z/10\Z$ \(\mathsf{CM}\) $[0,0,0,1]$ $[0,0,0,0,800000]$ $[0,0,0]$ $y^2 = x^5 + 1$
10005.a.50025.1 10005.a \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ \(\Q\) $[356,7873,1025121,6403200]$ $[89,2,-4496,-100037,50025]$ $[\frac{5584059449}{50025},\frac{1409938}{50025},-\frac{35612816}{50025}]$ $y^2 + (x^3 + x + 1)y = x - 1$
10005.b.450225.1 10005.b \( 3 \cdot 5 \cdot 23 \cdot 29 \) $2$ $\mathsf{trivial}$ \(\Q\) $[444,108777,21372411,-57628800]$ $[111,-4019,-153925,-8309509,-450225]$ $[-\frac{624095613}{16675},\frac{203574407}{16675},\frac{8428933}{2001}]$ $y^2 + (x^3 + x + 1)y = -2x^4 + 3x^2 + x + 2$
10016.a.641024.1 10016.a \( 2^{5} \cdot 313 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[7540,280537,678288235,80128]$ $[7540,2181792,781060880,282245675984,641024]$ $[\frac{23798893892678125}{626},\frac{456664687571625}{313},\frac{173455315333625}{2504}]$ $y^2 + xy = 8x^5 - 13x^4 - 19x^3 + 9x^2 - x$
10017.a.10017.1 10017.a \( 3^{3} \cdot 7 \cdot 53 \) $1$ $\mathsf{trivial}$ \(\Q\) $[996,3825,1057257,1282176]$ $[249,2424,32076,527787,10017]$ $[\frac{35451365787}{371},\frac{1386011688}{371},\frac{73657188}{371}]$ $y^2 + (x^3 + x^2 + 1)y = -x^4 - 2x^3 - 2$
10020.a.160320.1 10020.a \( 2^{2} \cdot 3 \cdot 5 \cdot 167 \) $1$ $\Z/3\Z$ \(\Q\) $[1436,278545,179457607,20520960]$ $[359,-6236,-1227984,-119933488,160320]$ $[\frac{5963102065799}{160320},-\frac{72132246961}{40080},-\frac{3297162623}{3340}]$ $y^2 + (x^3 + x + 1)y = -x^4 - 4x^3 + 7x + 4$
10023.a.30069.1 10023.a \( 3 \cdot 13 \cdot 257 \) $1$ $\mathsf{trivial}$ \(\Q\) $[280,-2048,-91928,120276]$ $[140,1158,3292,-220021,30069]$ $[\frac{53782400000}{30069},\frac{1059184000}{10023},\frac{64523200}{30069}]$ $y^2 + y = x^5 + 2x^4 + x^3 - 2x^2$
10025.a.10025.1 10025.a \( 5^{2} \cdot 401 \) $1$ $\mathsf{trivial}$ \(\Q\) $[336,1620,219240,-40100]$ $[168,906,-784,-238137,-10025]$ $[-\frac{133827821568}{10025},-\frac{4295918592}{10025},\frac{22127616}{10025}]$ $y^2 + y = x^6 - x^5 - x^4 + x^2 + x$
10028.a.641792.1 10028.a \( 2^{2} \cdot 23 \cdot 109 \) $1$ $\mathsf{trivial}$ \(\Q\) $[3500,34537,37868843,82149376]$ $[875,30462,1374556,68700764,641792]$ $[\frac{512908935546875}{641792},\frac{10203580078125}{320896},\frac{263098609375}{160448}]$ $y^2 + (x^3 + x^2 + x)y = 2x^4 + 2x^3 + 6x^2 + 2x + 4$
10032.a.30096.1 10032.a \( 2^{4} \cdot 3 \cdot 11 \cdot 19 \) $1$ $\mathsf{trivial}$ \(\Q\) $[136,2197,64119,-3762]$ $[136,-694,4160,21031,-30096]$ $[-\frac{2907867136}{1881},\frac{109107904}{1881},-\frac{4808960}{1881}]$ $y^2 + x^3y = -4x^4 - 8x^3 - 8x^2 - 4x - 1$
10036.a.642304.1 10036.a \( 2^{2} \cdot 13 \cdot 193 \) $1$ $\mathsf{trivial}$ \(\Q\) $[468,-27951,-4137687,82214912]$ $[117,1735,23325,-70300,642304]$ $[\frac{1686498489}{49408},\frac{213753735}{49408},\frac{24561225}{49408}]$ $y^2 + (x^2 + x + 1)y = -x^5 - 4x^3 - 2x^2$
10037.a.10037.1 10037.a \( 10037 \) $2$ $\mathsf{trivial}$ \(\Q\) $[0,1200,2304,-40148]$ $[0,-200,256,-10000,10037]$ $[0,-\frac{320000000000}{100741369},-\frac{51200}{10037}]$ $y^2 + y = x^5 + x^2$
10040.a.20080.1 10040.a \( 2^{3} \cdot 5 \cdot 251 \) $1$ $\Z/2\Z$ \(\Q\) $[272,-620,-181772,-80320]$ $[136,874,22116,560975,-20080]$ $[-\frac{2907867136}{1255},-\frac{137406784}{1255},-\frac{25566096}{1255}]$ $y^2 + (x + 1)y = 2x^5 - x^4 - 2x^3$
10040.b.321280.1 10040.b \( 2^{3} \cdot 5 \cdot 251 \) $1$ $\Z/2\Z$ \(\Q\) $[776,8044,1792988,-1285120]$ $[388,4932,80484,1725792,-321280]$ $[-\frac{34349361028}{1255},-\frac{1125325809}{1255},-\frac{189318489}{5020}]$ $y^2 + (x + 1)y = 2x^5 - x^4 - 3x^3 + x^2 + x$
10040.c.502000.1 10040.c \( 2^{3} \cdot 5 \cdot 251 \) $1$ $\Z/2\Z$ \(\Q\) $[16,-4076,38588,2008000]$ $[8,682,-5796,-127873,502000]$ $[\frac{2048}{31375},\frac{21824}{31375},-\frac{23184}{31375}]$ $y^2 + (x^2 + 1)y = x^5 - 3x^4 + 3x^3 - 2x$
10043.a.10043.1 10043.a \( 11^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ \(\Q\) $[376,352,24200,-40172]$ $[188,1414,15756,240683,-10043]$ $[-\frac{234849287168}{10043},-\frac{9395566208}{10043},-\frac{556880064}{10043}]$ $y^2 + y = x^5 - 2x^4 - 3x^3 + x$
10044.a.40176.1 10044.a \( 2^{2} \cdot 3^{4} \cdot 31 \) $1$ $\Z/2\Z$ \(\Q\) $[108,-6543,-22041,5142528]$ $[27,303,-1693,-34380,40176]$ $[\frac{177147}{496},\frac{73629}{496},-\frac{15237}{496}]$ $y^2 + (x^2 + x + 1)y = -x^5 - 2x^2$
10048.a.10048.1 10048.a \( 2^{6} \cdot 157 \) $1$ $\mathsf{trivial}$ \(\Q\) $[460,16375,1900672,1256]$ $[460,-2100,-69264,-9067860,10048]$ $[\frac{321817150000}{157},-\frac{3193837500}{157},-\frac{229004100}{157}]$ $y^2 + (x^3 + x^2)y = 2x^4 - x^3 + x^2 - 4x + 2$
10048.b.160768.1 10048.b \( 2^{6} \cdot 157 \) $1$ $\mathsf{trivial}$ \(\Q\) $[172,679,25648,20096]$ $[172,780,10608,304044,160768]$ $[\frac{147008443}{157},\frac{15503865}{628},\frac{1225887}{628}]$ $y^2 + (x^3 + x^2)y = x^4 + 3x^3 + 5x^2 + 4x + 2$
10056.a.181008.1 10056.a \( 2^{3} \cdot 3 \cdot 419 \) $1$ $\Z/2\Z$ \(\Q\) $[368,4132,532068,724032]$ $[184,722,-9500,-567321,181008]$ $[\frac{13181630464}{11313},\frac{281106368}{11313},-\frac{20102000}{11313}]$ $y^2 + xy = 2x^5 - 3x^4 + 4x^3 - 2x^2 + x$
10064.a.10064.1 10064.a \( 2^{4} \cdot 17 \cdot 37 \) $1$ $\mathsf{trivial}$ \(\Q\) $[104,9760,284236,40256]$ $[52,-1514,-7760,-673929,10064]$ $[\frac{23762752}{629},-\frac{13305032}{629},-\frac{1311440}{629}]$ $y^2 + (x^3 + x)y = -x^4 - 2x^3 + x^2 + 2x + 1$
10073.a.10073.1 10073.a \( 7 \cdot 1439 \) $2$ $\mathsf{trivial}$ \(\Q\) $[500,7801,1091757,-1289344]$ $[125,326,644,-6444,-10073]$ $[-\frac{30517578125}{10073},-\frac{636718750}{10073},-\frac{1437500}{1439}]$ $y^2 + (x^2 + x + 1)y = -x^5 + 2x^4 - 3x^2$
10075.a.10075.1 10075.a \( 5^{2} \cdot 13 \cdot 31 \) $1$ $\Z/2\Z$ \(\Q\) $[224,304,41431,-40300]$ $[112,472,225,-49396,-10075]$ $[-\frac{17623416832}{10075},-\frac{663126016}{10075},-\frac{112896}{403}]$ $y^2 + xy = x^5 - 4x^3 - 4x^2 - x$
10075.b.654875.1 10075.b \( 5^{2} \cdot 13 \cdot 31 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[1376,69520,22838615,-2619500]$ $[688,8136,430561,57507868,-654875]$ $[-\frac{154149525127168}{654875},-\frac{2649575227392}{654875},-\frac{203803465984}{654875}]$ $y^2 + xy = x^5 + 2x^4 - 4x^3 - 8x^2 - 1$
10075.c.654875.1 10075.c \( 5^{2} \cdot 13 \cdot 31 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[144016,182644,6685568599,-2619500]$ $[72008,216017562,864154072025,3890604831488089,-654875]$ $[-\frac{1935992825145263554592768}{654875},-\frac{80655002008707170079744}{654875},-\frac{179230810806977336384}{26195}]$ $y^2 + xy = 5x^5 + 41x^4 + 88x^3 + 16x^2 + x$
10080.a.60480.1 10080.a \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[161296,406586887,19127473723714,7560]$ $[161296,812958726,4856153621760,30594066098964471,60480]$ $[\frac{1705838896690345318825984}{945},\frac{17767980154611986862208}{315},\frac{6266846885932235776}{3}]$ $y^2 + xy = -15x^6 + 58x^4 - 60x^2 + 7$
10080.b.60480.1 10080.b \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/4\Z$ \(\Q \times \Q\) $[161296,406586887,19127473723714,7560]$ $[161296,812958726,4856153621760,30594066098964471,60480]$ $[\frac{1705838896690345318825984}{945},\frac{17767980154611986862208}{315},\frac{6266846885932235776}{3}]$ $y^2 + xy = -15x^6 - 58x^4 - 60x^2 - 7$
10080.c.141120.1 10080.c \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[3388552,174712,197326050612,564480]$ $[1694276,119607102722,11258185829425920,1192153758196342556159,141120]$ $[\frac{218142768611210403574323981584}{2205},\frac{9089279812657801356650662498}{2205},229006686528379459553216]$ $y^2 + (x^3 + x)y = -x^6 + 35x^4 - 560x^2 + 2940$
10080.d.241920.1 10080.d \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[182588,82357,5005132713,30240]$ $[182588,1389044168,14089048001280,160761848950725104,241920]$ $[\frac{113246073358644668236004}{135},\frac{4718399886030325759138}{135},1941575745370456496]$ $y^2 + (x^3 + x)y = 2x^6 - 25x^4 + 88x^2 - 105$
10081.a.10081.1 10081.a \( 17 \cdot 593 \) $1$ $\Z/3\Z$ \(\Q\) $[876,8337,1989399,1290368]$ $[219,1651,17815,293921,10081]$ $[\frac{503756397099}{10081},\frac{17341210809}{10081},\frac{854425215}{10081}]$ $y^2 + (x^2 + x + 1)y = x^6 + 2x^4 + x^3 + x^2$
10082.a.20164.1 10082.a \( 2 \cdot 71^{2} \) $1$ $\Z/2\Z$ \(\Q\) $[484,-25631,-3305263,-2580992]$ $[121,1678,14112,-277033,-20164]$ $[-\frac{25937424601}{20164},-\frac{1486339679}{10082},-\frac{51653448}{5041}]$ $y^2 + (x^2 + x)y = -x^5 + x^3 - 2x^2 - x + 1$
10086.a.181548.1 10086.a \( 2 \cdot 3 \cdot 41^{2} \) $1$ $\Z/2\Z$ \(\Q\) $[388,11521,1128033,23238144]$ $[97,-88,-620,-16971,181548]$ $[\frac{8587340257}{181548},-\frac{20078806}{45387},-\frac{1458395}{45387}]$ $y^2 + (x^2 + x)y = x^5 + x^4 + x^3 + 2x^2 + 2x + 1$
10086.b.413526.1 10086.b \( 2 \cdot 3 \cdot 41^{2} \) $0$ $\Z/6\Z$ \(\Q\) $[1208,136120,71419827,1654104]$ $[604,-7486,-3619151,-560501850,413526]$ $[\frac{40193395584512}{206763},-\frac{824765797952}{206763},-\frac{660162095608}{206763}]$ $y^2 + (x^3 + x)y = -x^6 - 4x^5 - 7x^4 - 6x^3 + 3x + 3$
10095.a.30285.1 10095.a \( 3 \cdot 5 \cdot 673 \) $1$ $\Z/2\Z$ \(\Q\) $[408,1140,79287,121140]$ $[204,1544,21609,506075,30285]$ $[\frac{39256206336}{3365},\frac{1456449024}{3365},\frac{99920016}{3365}]$ $y^2 + (x^3 + x)y = -2x^4 + 4x^2 - 3x$
10097.a.10097.1 10097.a \( 23 \cdot 439 \) $1$ $\mathsf{trivial}$ \(\Q\) $[484,5761,1219457,1292416]$ $[121,370,-4768,-178457,10097]$ $[\frac{25937424601}{10097},\frac{655477570}{10097},-\frac{69808288}{10097}]$ $y^2 + (x^3 + x + 1)y = -x^4 + 2x^3 - 3x^2 + 2x - 1$
10098.a.272646.1 10098.a \( 2 \cdot 3^{3} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[56004,288321,5331417537,143616]$ $[42003,73402380,170798965524,446539889810043,272646]$ $[\frac{179338702480653356667}{374},\frac{3730727674118765970}{187},1105214886926046]$ $y^2 + (x^3 + 1)y = -9x^6 + 16x^5 - 35x^4 + 33x^3 - 35x^2 + 16x - 9$
10102.a.323264.1 10102.a \( 2 \cdot 5051 \) $1$ $\Z/2\Z$ \(\Q\) $[472,8644,1089623,-1293056]$ $[236,880,3801,30659,-323264]$ $[-\frac{11438788784}{5051},-\frac{180733520}{5051},-\frac{13231281}{20204}]$ $y^2 + (x + 1)y = -x^5 + 3x^4 + x^3 - 3x^2$
10110.a.50550.2 10110.a \( 2 \cdot 3 \cdot 5 \cdot 337 \) $1$ $\Z/2\Z$ \(\Q\) $[5467652,-306863,-559265218983,-6470400]$ $[1366913,77852144018,5912063482701400,505080025782601398469,-50550]$ $[-\frac{4772043231067501633914862225793}{50550},-\frac{99417583641640068080475078473}{25275},-\frac{655572807749456176591436}{3}]$ $y^2 + (x^2 + x)y = 39x^6 - 45x^5 - 62x^4 + 22x^3 + 69x^2 + 50x - 75$
10110.a.50550.1 10110.a \( 2 \cdot 3 \cdot 5 \cdot 337 \) $1$ $\Z/2\Z$ \(\Q\) $[20,16177,1232025,6470400]$ $[5,-673,-16175,-133451,50550]$ $[\frac{125}{2022},-\frac{3365}{2022},-\frac{16175}{2022}]$ $y^2 + (x^3 + 1)y = 2x^5 + 3x^4 + 2x^3 - x - 1$
10112.a.10112.1 10112.a \( 2^{7} \cdot 79 \) $1$ $\Z/2\Z$ \(\Q\) $[592,493,90838,1264]$ $[592,14274,453568,16191295,10112]$ $[\frac{568065695744}{79},\frac{23136669504}{79},\frac{1241869184}{79}]$ $y^2 + (x^3 + x^2)y = 2x^4 + 2x^3 + 5x^2 + 2x + 3$
10114.a.262964.1 10114.a \( 2 \cdot 13 \cdot 389 \) $0$ $\Z/6\Z$ \(\Q\) $[1256,3016,-13131397,1051856]$ $[628,15930,2120049,269406468,262964]$ $[\frac{24419582094592}{65741},\frac{986358327840}{65741},\frac{209028351204}{65741}]$ $y^2 + (x^2 + 1)y = 2x^5 - 4x^4 - 2x^3 + 3x^2 + x + 1$
10115.a.10115.1 10115.a \( 5 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ \(\Q\) $[1236,3825,1561977,1294720]$ $[309,3819,60281,1010517,10115]$ $[\frac{2817036000549}{10115},\frac{112674359151}{10115},\frac{5755690161}{10115}]$ $y^2 + (x^3 + x^2 + x)y = -x^4 + 3x^2 + x - 2$
10115.b.70805.1 10115.b \( 5 \cdot 7 \cdot 17^{2} \) $0$ $\Z/10\Z$ \(\Q\) $[184,-45356,-3194113,283220]$ $[92,7912,163521,-11888953,70805]$ $[\frac{6590815232}{70805},\frac{6160979456}{70805},\frac{1384041744}{70805}]$ $y^2 + xy = 7x^5 - 12x^4 + 7x^3 - 3x^2 + x$
10115.c.70805.1 10115.c \( 5 \cdot 7 \cdot 17^{2} \) $0$ $\Z/4\Z$ \(\Q\) $[176,-1292,-23681,283220]$ $[88,538,-1055,-95571,70805]$ $[\frac{5277319168}{70805},\frac{366631936}{70805},-\frac{1633984}{14161}]$ $y^2 + xy = x^5 - x^4 + x$
10121.a.293509.1 10121.a \( 29 \cdot 349 \) $1$ $\mathsf{trivial}$ \(\Q\) $[640,-512,-234048,1174036]$ $[320,4352,94272,2806784,293509]$ $[\frac{3355443200000}{293509},\frac{142606336000}{293509},\frac{9653452800}{293509}]$ $y^2 + y = x^5 + 2x^4 + 4x + 3$
10125.a.10125.1 10125.a \( 3^{4} \cdot 5^{3} \) $1$ $\mathsf{trivial}$ \(\Q\) $[420,6705,902025,1296000]$ $[105,180,-1700,-52725,10125]$ $[1260525,20580,-\frac{16660}{9}]$ $y^2 + (x^3 + x + 1)y = -x^2 + x - 1$
10125.a.10125.2 10125.a \( 3^{4} \cdot 5^{3} \) $1$ $\Z/5\Z$ \(\Q\) $[27780,151768305,775034217225,1296000]$ $[6945,-4313970,2210480200,-814638042975,10125]$ $[1595755016890725,-142724601457530,\frac{94771685998760}{9}]$ $y^2 + (x^3 + x^2 + 1)y = 9x^4 + 28x^3 - x^2 - 34x + 13$
10130.a.162080.1 10130.a \( 2 \cdot 5 \cdot 1013 \) $1$ $\mathsf{trivial}$ \(\Q\) $[2144,5248,3753415,648320]$ $[1072,47008,2695089,169845836,162080]$ $[\frac{44240899506176}{5065},\frac{1809698189312}{5065},\frac{96786036168}{5065}]$ $y^2 + (x^3 + x^2)y = -x^4 + 3x^2 - 5x - 10$
10137.a.10137.1 10137.a \( 3 \cdot 31 \cdot 109 \) $1$ $\mathsf{trivial}$ \(\Q\) $[2628,3417,2633517,1297536]$ $[657,17843,645873,26491478,10137]$ $[\frac{40804268165019}{3379},\frac{1686718970433}{3379},\frac{92930144859}{3379}]$ $y^2 + (x^3 + x + 1)y = -2x^4 + 4x^2 - x - 4$
Next   displayed columns for results