Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
10000.a.160000.1 |
10000.a |
\( 2^{4} \cdot 5^{4} \) |
\( - 2^{8} \cdot 5^{4} \) |
$0$ |
$0$ |
$\Z/5\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2$ |
$C_2$ |
$2$ |
$0$ |
2.60.2, 3.1080.9 |
✓ |
✓ |
$1$ |
\( 5 \) |
\(1.000000\) |
\(8.650088\) |
\(1.730018\) |
$[612,11325,1916325,20000]$ |
$[612,8056,110704,712928,160000]$ |
$[\frac{335364543972}{625},\frac{7213296078}{625},\frac{161966871}{625}]$ |
$y^2 + xy = x^6 - 2x^5 + 2x^4 - x^3 + 2x^2 - 3x + 2$ |
10000.b.800000.1 |
10000.b |
\( 2^{4} \cdot 5^{4} \) |
\( 2^{8} \cdot 5^{5} \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\mathsf{CM}\) |
\(\Q\) |
|
$F_{ac}$ |
|
✓ |
✓ |
$C_2$ |
$C_{10}$ |
$4$ |
$2$ |
2.180.2, 3.1296.1 |
✓ |
✓ |
$1$ |
\( 2 \cdot 5 \) |
\(1.000000\) |
\(10.314071\) |
\(1.031407\) |
$[0,0,0,1]$ |
$[0,0,0,0,800000]$ |
$[0,0,0]$ |
$y^2 = x^5 + 1$ |
10005.a.50025.1 |
10005.a |
\( 3 \cdot 5 \cdot 23 \cdot 29 \) |
\( 3 \cdot 5^{2} \cdot 23 \cdot 29 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.20.2 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.034065\) |
\(10.892123\) |
\(0.742091\) |
$[356,7873,1025121,6403200]$ |
$[89,2,-4496,-100037,50025]$ |
$[\frac{5584059449}{50025},\frac{1409938}{50025},-\frac{35612816}{50025}]$ |
$y^2 + (x^3 + x + 1)y = x - 1$ |
10005.b.450225.1 |
10005.b |
\( 3 \cdot 5 \cdot 23 \cdot 29 \) |
\( 3^{3} \cdot 5^{2} \cdot 23 \cdot 29 \) |
$2$ |
$2$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$14$ |
$0$ |
2.20.2 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(0.003683\) |
\(16.517374\) |
\(0.365023\) |
$[444,108777,21372411,-57628800]$ |
$[111,-4019,-153925,-8309509,-450225]$ |
$[-\frac{624095613}{16675},\frac{203574407}{16675},\frac{8428933}{2001}]$ |
$y^2 + (x^3 + x + 1)y = -2x^4 + 3x^2 + x + 2$ |
10016.a.641024.1 |
10016.a |
\( 2^{5} \cdot 313 \) |
\( 2^{11} \cdot 313 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$2$ |
2.180.3 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(3.556106\) |
\(0.889027\) |
$[7540,280537,678288235,80128]$ |
$[7540,2181792,781060880,282245675984,641024]$ |
$[\frac{23798893892678125}{626},\frac{456664687571625}{313},\frac{173455315333625}{2504}]$ |
$y^2 + xy = 8x^5 - 13x^4 - 19x^3 + 9x^2 - x$ |
10017.a.10017.1 |
10017.a |
\( 3^{3} \cdot 7 \cdot 53 \) |
\( 3^{3} \cdot 7 \cdot 53 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
|
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
|
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.093885\) |
\(7.225875\) |
\(0.678402\) |
$[996,3825,1057257,1282176]$ |
$[249,2424,32076,527787,10017]$ |
$[\frac{35451365787}{371},\frac{1386011688}{371},\frac{73657188}{371}]$ |
$y^2 + (x^3 + x^2 + 1)y = -x^4 - 2x^3 - 2$ |
10020.a.160320.1 |
10020.a |
\( 2^{2} \cdot 3 \cdot 5 \cdot 167 \) |
\( - 2^{6} \cdot 3 \cdot 5 \cdot 167 \) |
$1$ |
$1$ |
$\Z/3\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$0$ |
3.80.1 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(0.113712\) |
\(19.204492\) |
\(0.727926\) |
$[1436,278545,179457607,20520960]$ |
$[359,-6236,-1227984,-119933488,160320]$ |
$[\frac{5963102065799}{160320},-\frac{72132246961}{40080},-\frac{3297162623}{3340}]$ |
$y^2 + (x^3 + x + 1)y = -x^4 - 4x^3 + 7x + 4$ |
10023.a.30069.1 |
10023.a |
\( 3 \cdot 13 \cdot 257 \) |
\( 3^{2} \cdot 13 \cdot 257 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.027384\) |
\(11.964997\) |
\(0.655295\) |
$[280,-2048,-91928,120276]$ |
$[140,1158,3292,-220021,30069]$ |
$[\frac{53782400000}{30069},\frac{1059184000}{10023},\frac{64523200}{30069}]$ |
$y^2 + y = x^5 + 2x^4 + x^3 - 2x^2$ |
10025.a.10025.1 |
10025.a |
\( 5^{2} \cdot 401 \) |
\( 5^{2} \cdot 401 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
|
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
|
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.041216\) |
\(22.572427\) |
\(0.930348\) |
$[336,1620,219240,-40100]$ |
$[168,906,-784,-238137,-10025]$ |
$[-\frac{133827821568}{10025},-\frac{4295918592}{10025},\frac{22127616}{10025}]$ |
$y^2 + y = x^6 - x^5 - x^4 + x^2 + x$ |
10028.a.641792.1 |
10028.a |
\( 2^{2} \cdot 23 \cdot 109 \) |
\( - 2^{8} \cdot 23 \cdot 109 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
|
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$0$ |
|
✓ |
✓ |
$1$ |
\( 13 \) |
\(0.007912\) |
\(7.935388\) |
\(0.816246\) |
$[3500,34537,37868843,82149376]$ |
$[875,30462,1374556,68700764,641792]$ |
$[\frac{512908935546875}{641792},\frac{10203580078125}{320896},\frac{263098609375}{160448}]$ |
$y^2 + (x^3 + x^2 + x)y = 2x^4 + 2x^3 + 6x^2 + 2x + 4$ |
10032.a.30096.1 |
10032.a |
\( 2^{4} \cdot 3 \cdot 11 \cdot 19 \) |
\( 2^{4} \cdot 3^{2} \cdot 11 \cdot 19 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$0$ |
2.20.2, 3.40.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.084313\) |
\(5.626941\) |
\(0.948843\) |
$[136,2197,64119,-3762]$ |
$[136,-694,4160,21031,-30096]$ |
$[-\frac{2907867136}{1881},\frac{109107904}{1881},-\frac{4808960}{1881}]$ |
$y^2 + x^3y = -4x^4 - 8x^3 - 8x^2 - 4x - 1$ |
10036.a.642304.1 |
10036.a |
\( 2^{2} \cdot 13 \cdot 193 \) |
\( 2^{8} \cdot 13 \cdot 193 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.044840\) |
\(10.148310\) |
\(0.910105\) |
$[468,-27951,-4137687,82214912]$ |
$[117,1735,23325,-70300,642304]$ |
$[\frac{1686498489}{49408},\frac{213753735}{49408},\frac{24561225}{49408}]$ |
$y^2 + (x^2 + x + 1)y = -x^5 - 4x^3 - 2x^2$ |
10037.a.10037.1 |
10037.a |
\( 10037 \) |
\( 10037 \) |
$2$ |
$2$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$7$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.026888\) |
\(16.218074\) |
\(0.436076\) |
$[0,1200,2304,-40148]$ |
$[0,-200,256,-10000,10037]$ |
$[0,-\frac{320000000000}{100741369},-\frac{51200}{10037}]$ |
$y^2 + y = x^5 + x^2$ |
10040.a.20080.1 |
10040.a |
\( 2^{3} \cdot 5 \cdot 251 \) |
\( - 2^{4} \cdot 5 \cdot 251 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.079534\) |
\(19.409052\) |
\(0.771844\) |
$[272,-620,-181772,-80320]$ |
$[136,874,22116,560975,-20080]$ |
$[-\frac{2907867136}{1255},-\frac{137406784}{1255},-\frac{25566096}{1255}]$ |
$y^2 + (x + 1)y = 2x^5 - x^4 - 2x^3$ |
10040.b.321280.1 |
10040.b |
\( 2^{3} \cdot 5 \cdot 251 \) |
\( - 2^{8} \cdot 5 \cdot 251 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$8$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \cdot 7 \) |
\(0.018737\) |
\(16.510273\) |
\(1.082736\) |
$[776,8044,1792988,-1285120]$ |
$[388,4932,80484,1725792,-321280]$ |
$[-\frac{34349361028}{1255},-\frac{1125325809}{1255},-\frac{189318489}{5020}]$ |
$y^2 + (x + 1)y = 2x^5 - x^4 - 3x^3 + x^2 + x$ |
10040.c.502000.1 |
10040.c |
\( 2^{3} \cdot 5 \cdot 251 \) |
\( - 2^{4} \cdot 5^{3} \cdot 251 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(0.045172\) |
\(11.060477\) |
\(0.749431\) |
$[16,-4076,38588,2008000]$ |
$[8,682,-5796,-127873,502000]$ |
$[\frac{2048}{31375},\frac{21824}{31375},-\frac{23184}{31375}]$ |
$y^2 + (x^2 + 1)y = x^5 - 3x^4 + 3x^3 - 2x$ |
10043.a.10043.1 |
10043.a |
\( 11^{2} \cdot 83 \) |
\( - 11^{2} \cdot 83 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.086103\) |
\(9.620048\) |
\(0.828315\) |
$[376,352,24200,-40172]$ |
$[188,1414,15756,240683,-10043]$ |
$[-\frac{234849287168}{10043},-\frac{9395566208}{10043},-\frac{556880064}{10043}]$ |
$y^2 + y = x^5 - 2x^4 - 3x^3 + x$ |
10044.a.40176.1 |
10044.a |
\( 2^{2} \cdot 3^{4} \cdot 31 \) |
\( - 2^{4} \cdot 3^{4} \cdot 31 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1, 3.90.2 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.141330\) |
\(13.036036\) |
\(0.921192\) |
$[108,-6543,-22041,5142528]$ |
$[27,303,-1693,-34380,40176]$ |
$[\frac{177147}{496},\frac{73629}{496},-\frac{15237}{496}]$ |
$y^2 + (x^2 + x + 1)y = -x^5 - 2x^2$ |
10048.a.10048.1 |
10048.a |
\( 2^{6} \cdot 157 \) |
\( - 2^{6} \cdot 157 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$0$ |
2.10.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.041489\) |
\(17.159236\) |
\(0.711923\) |
$[460,16375,1900672,1256]$ |
$[460,-2100,-69264,-9067860,10048]$ |
$[\frac{321817150000}{157},-\frac{3193837500}{157},-\frac{229004100}{157}]$ |
$y^2 + (x^3 + x^2)y = 2x^4 - x^3 + x^2 - 4x + 2$ |
10048.b.160768.1 |
10048.b |
\( 2^{6} \cdot 157 \) |
\( - 2^{10} \cdot 157 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$0$ |
2.10.1 |
✓ |
✓ |
$1$ |
\( 3^{2} \) |
\(0.009996\) |
\(12.047346\) |
\(1.083807\) |
$[172,679,25648,20096]$ |
$[172,780,10608,304044,160768]$ |
$[\frac{147008443}{157},\frac{15503865}{628},\frac{1225887}{628}]$ |
$y^2 + (x^3 + x^2)y = x^4 + 3x^3 + 5x^2 + 4x + 2$ |
10056.a.181008.1 |
10056.a |
\( 2^{3} \cdot 3 \cdot 419 \) |
\( 2^{4} \cdot 3^{3} \cdot 419 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(0.055781\) |
\(8.723347\) |
\(0.729895\) |
$[368,4132,532068,724032]$ |
$[184,722,-9500,-567321,181008]$ |
$[\frac{13181630464}{11313},\frac{281106368}{11313},-\frac{20102000}{11313}]$ |
$y^2 + xy = 2x^5 - 3x^4 + 4x^3 - 2x^2 + x$ |
10064.a.10064.1 |
10064.a |
\( 2^{4} \cdot 17 \cdot 37 \) |
\( - 2^{4} \cdot 17 \cdot 37 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.10.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.034575\) |
\(22.394433\) |
\(0.774288\) |
$[104,9760,284236,40256]$ |
$[52,-1514,-7760,-673929,10064]$ |
$[\frac{23762752}{629},-\frac{13305032}{629},-\frac{1311440}{629}]$ |
$y^2 + (x^3 + x)y = -x^4 - 2x^3 + x^2 + 2x + 1$ |
10073.a.10073.1 |
10073.a |
\( 7 \cdot 1439 \) |
\( - 7 \cdot 1439 \) |
$2$ |
$2$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$11$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.017404\) |
\(24.245966\) |
\(0.421984\) |
$[500,7801,1091757,-1289344]$ |
$[125,326,644,-6444,-10073]$ |
$[-\frac{30517578125}{10073},-\frac{636718750}{10073},-\frac{1437500}{1439}]$ |
$y^2 + (x^2 + x + 1)y = -x^5 + 2x^4 - 3x^2$ |
10075.a.10075.1 |
10075.a |
\( 5^{2} \cdot 13 \cdot 31 \) |
\( - 5^{2} \cdot 13 \cdot 31 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.182151\) |
\(18.074402\) |
\(0.823066\) |
$[224,304,41431,-40300]$ |
$[112,472,225,-49396,-10075]$ |
$[-\frac{17623416832}{10075},-\frac{663126016}{10075},-\frac{112896}{403}]$ |
$y^2 + xy = x^5 - 4x^3 - 4x^2 - x$ |
10075.b.654875.1 |
10075.b |
\( 5^{2} \cdot 13 \cdot 31 \) |
\( - 5^{3} \cdot 13^{2} \cdot 31 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$3$ |
2.120.3 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(3.336022\) |
\(0.834006\) |
$[1376,69520,22838615,-2619500]$ |
$[688,8136,430561,57507868,-654875]$ |
$[-\frac{154149525127168}{654875},-\frac{2649575227392}{654875},-\frac{203803465984}{654875}]$ |
$y^2 + xy = x^5 + 2x^4 - 4x^3 - 8x^2 - 1$ |
10075.c.654875.1 |
10075.c |
\( 5^{2} \cdot 13 \cdot 31 \) |
\( - 5^{3} \cdot 13^{2} \cdot 31 \) |
$0$ |
$4$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$3$ |
2.120.3 |
✓ |
✓ |
$4$ |
\( 2^{2} \) |
\(1.000000\) |
\(1.535742\) |
\(1.535742\) |
$[144016,182644,6685568599,-2619500]$ |
$[72008,216017562,864154072025,3890604831488089,-654875]$ |
$[-\frac{1935992825145263554592768}{654875},-\frac{80655002008707170079744}{654875},-\frac{179230810806977336384}{26195}]$ |
$y^2 + xy = 5x^5 + 41x^4 + 88x^3 + 16x^2 + x$ |
10080.a.60480.1 |
10080.a |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \) |
\( 2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \) |
$0$ |
$4$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.180.7, 3.90.1 |
✓ |
✓ |
$4$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(0.556034\) |
\(0.834051\) |
$[161296,406586887,19127473723714,7560]$ |
$[161296,812958726,4856153621760,30594066098964471,60480]$ |
$[\frac{1705838896690345318825984}{945},\frac{17767980154611986862208}{315},\frac{6266846885932235776}{3}]$ |
$y^2 + xy = -15x^6 + 58x^4 - 60x^2 + 7$ |
10080.b.60480.1 |
10080.b |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \) |
$0$ |
$3$ |
$\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.90.5, 3.90.1 |
|
✓ |
$4$ |
\( 2 \) |
\(1.000000\) |
\(0.944615\) |
\(0.472308\) |
$[161296,406586887,19127473723714,7560]$ |
$[161296,812958726,4856153621760,30594066098964471,60480]$ |
$[\frac{1705838896690345318825984}{945},\frac{17767980154611986862208}{315},\frac{6266846885932235776}{3}]$ |
$y^2 + xy = -15x^6 - 58x^4 - 60x^2 - 7$ |
10080.c.141120.1 |
10080.c |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \) |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
$0$ |
$4$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$4$ |
\( 2^{2} \) |
\(1.000000\) |
\(5.655296\) |
\(1.413824\) |
$[3388552,174712,197326050612,564480]$ |
$[1694276,119607102722,11258185829425920,1192153758196342556159,141120]$ |
$[\frac{218142768611210403574323981584}{2205},\frac{9089279812657801356650662498}{2205},229006686528379459553216]$ |
$y^2 + (x^3 + x)y = -x^6 + 35x^4 - 560x^2 + 2940$ |
10080.d.241920.1 |
10080.d |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \) |
\( 2^{8} \cdot 3^{3} \cdot 5 \cdot 7 \) |
$1$ |
$3$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(0.532647\) |
\(12.085488\) |
\(0.804662\) |
$[182588,82357,5005132713,30240]$ |
$[182588,1389044168,14089048001280,160761848950725104,241920]$ |
$[\frac{113246073358644668236004}{135},\frac{4718399886030325759138}{135},1941575745370456496]$ |
$y^2 + (x^3 + x)y = 2x^6 - 25x^4 + 88x^2 - 105$ |
10081.a.10081.1 |
10081.a |
\( 17 \cdot 593 \) |
\( - 17 \cdot 593 \) |
$1$ |
$1$ |
$\Z/3\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.10.1, 3.80.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.569378\) |
\(13.178255\) |
\(0.833712\) |
$[876,8337,1989399,1290368]$ |
$[219,1651,17815,293921,10081]$ |
$[\frac{503756397099}{10081},\frac{17341210809}{10081},\frac{854425215}{10081}]$ |
$y^2 + (x^2 + x + 1)y = x^6 + 2x^4 + x^3 + x^2$ |
10082.a.20164.1 |
10082.a |
\( 2 \cdot 71^{2} \) |
\( - 2^{2} \cdot 71^{2} \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.137571\) |
\(14.062445\) |
\(0.967292\) |
$[484,-25631,-3305263,-2580992]$ |
$[121,1678,14112,-277033,-20164]$ |
$[-\frac{25937424601}{20164},-\frac{1486339679}{10082},-\frac{51653448}{5041}]$ |
$y^2 + (x^2 + x)y = -x^5 + x^3 - 2x^2 - x + 1$ |
10086.a.181548.1 |
10086.a |
\( 2 \cdot 3 \cdot 41^{2} \) |
\( 2^{2} \cdot 3^{3} \cdot 41^{2} \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(0.058561\) |
\(10.585028\) |
\(0.929797\) |
$[388,11521,1128033,23238144]$ |
$[97,-88,-620,-16971,181548]$ |
$[\frac{8587340257}{181548},-\frac{20078806}{45387},-\frac{1458395}{45387}]$ |
$y^2 + (x^2 + x)y = x^5 + x^4 + x^3 + 2x^2 + 2x + 1$ |
10086.b.413526.1 |
10086.b |
\( 2 \cdot 3 \cdot 41^{2} \) |
\( 2 \cdot 3 \cdot 41^{3} \) |
$0$ |
$3$ |
$\Z/6\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$0$ |
$0$ |
2.15.1, 3.80.1 |
✓ |
✓ |
$4$ |
\( 2 \) |
\(1.000000\) |
\(5.766529\) |
\(1.281451\) |
$[1208,136120,71419827,1654104]$ |
$[604,-7486,-3619151,-560501850,413526]$ |
$[\frac{40193395584512}{206763},-\frac{824765797952}{206763},-\frac{660162095608}{206763}]$ |
$y^2 + (x^3 + x)y = -x^6 - 4x^5 - 7x^4 - 6x^3 + 3x + 3$ |
10095.a.30285.1 |
10095.a |
\( 3 \cdot 5 \cdot 673 \) |
\( 3^{2} \cdot 5 \cdot 673 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.073448\) |
\(19.185274\) |
\(0.704561\) |
$[408,1140,79287,121140]$ |
$[204,1544,21609,506075,30285]$ |
$[\frac{39256206336}{3365},\frac{1456449024}{3365},\frac{99920016}{3365}]$ |
$y^2 + (x^3 + x)y = -2x^4 + 4x^2 - 3x$ |
10097.a.10097.1 |
10097.a |
\( 23 \cdot 439 \) |
\( 23 \cdot 439 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.20.2 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.099172\) |
\(11.170733\) |
\(1.107828\) |
$[484,5761,1219457,1292416]$ |
$[121,370,-4768,-178457,10097]$ |
$[\frac{25937424601}{10097},\frac{655477570}{10097},-\frac{69808288}{10097}]$ |
$y^2 + (x^3 + x + 1)y = -x^4 + 2x^3 - 3x^2 + 2x - 1$ |
10098.a.272646.1 |
10098.a |
\( 2 \cdot 3^{3} \cdot 11 \cdot 17 \) |
\( - 2 \cdot 3^{6} \cdot 11 \cdot 17 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.90.6, 3.90.1 |
|
|
$2$ |
\( 2^{2} \) |
\(1.000000\) |
\(3.494509\) |
\(1.747254\) |
$[56004,288321,5331417537,143616]$ |
$[42003,73402380,170798965524,446539889810043,272646]$ |
$[\frac{179338702480653356667}{374},\frac{3730727674118765970}{187},1105214886926046]$ |
$y^2 + (x^3 + 1)y = -9x^6 + 16x^5 - 35x^4 + 33x^3 - 35x^2 + 16x - 9$ |
10102.a.323264.1 |
10102.a |
\( 2 \cdot 5051 \) |
\( - 2^{6} \cdot 5051 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$8$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(0.025482\) |
\(17.571527\) |
\(0.671647\) |
$[472,8644,1089623,-1293056]$ |
$[236,880,3801,30659,-323264]$ |
$[-\frac{11438788784}{5051},-\frac{180733520}{5051},-\frac{13231281}{20204}]$ |
$y^2 + (x + 1)y = -x^5 + 3x^4 + x^3 - 3x^2$ |
10110.a.50550.2 |
10110.a |
\( 2 \cdot 3 \cdot 5 \cdot 337 \) |
\( - 2 \cdot 3 \cdot 5^{2} \cdot 337 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$1$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.303674\) |
\(6.345414\) |
\(0.963468\) |
$[5467652,-306863,-559265218983,-6470400]$ |
$[1366913,77852144018,5912063482701400,505080025782601398469,-50550]$ |
$[-\frac{4772043231067501633914862225793}{50550},-\frac{99417583641640068080475078473}{25275},-\frac{655572807749456176591436}{3}]$ |
$y^2 + (x^2 + x)y = 39x^6 - 45x^5 - 62x^4 + 22x^3 + 69x^2 + 50x - 75$ |
10110.a.50550.1 |
10110.a |
\( 2 \cdot 3 \cdot 5 \cdot 337 \) |
\( 2 \cdot 3 \cdot 5^{2} \cdot 337 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$0$ |
2.15.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.303674\) |
\(6.345414\) |
\(0.963468\) |
$[20,16177,1232025,6470400]$ |
$[5,-673,-16175,-133451,50550]$ |
$[\frac{125}{2022},-\frac{3365}{2022},-\frac{16175}{2022}]$ |
$y^2 + (x^3 + 1)y = 2x^5 + 3x^4 + 2x^3 - x - 1$ |
10112.a.10112.1 |
10112.a |
\( 2^{7} \cdot 79 \) |
\( - 2^{7} \cdot 79 \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$0$ |
2.15.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.265768\) |
\(11.091126\) |
\(0.736918\) |
$[592,493,90838,1264]$ |
$[592,14274,453568,16191295,10112]$ |
$[\frac{568065695744}{79},\frac{23136669504}{79},\frac{1241869184}{79}]$ |
$y^2 + (x^3 + x^2)y = 2x^4 + 2x^3 + 5x^2 + 2x + 3$ |
10114.a.262964.1 |
10114.a |
\( 2 \cdot 13 \cdot 389 \) |
\( 2^{2} \cdot 13^{2} \cdot 389 \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$2$ |
2.30.3, 3.80.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(14.310026\) |
\(1.590003\) |
$[1256,3016,-13131397,1051856]$ |
$[628,15930,2120049,269406468,262964]$ |
$[\frac{24419582094592}{65741},\frac{986358327840}{65741},\frac{209028351204}{65741}]$ |
$y^2 + (x^2 + 1)y = 2x^5 - 4x^4 - 2x^3 + 3x^2 + x + 1$ |
10115.a.10115.1 |
10115.a |
\( 5 \cdot 7 \cdot 17^{2} \) |
\( 5 \cdot 7 \cdot 17^{2} \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.15.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.269552\) |
\(11.751001\) |
\(0.791876\) |
$[1236,3825,1561977,1294720]$ |
$[309,3819,60281,1010517,10115]$ |
$[\frac{2817036000549}{10115},\frac{112674359151}{10115},\frac{5755690161}{10115}]$ |
$y^2 + (x^3 + x^2 + x)y = -x^4 + 3x^2 + x - 2$ |
10115.b.70805.1 |
10115.b |
\( 5 \cdot 7 \cdot 17^{2} \) |
\( 5 \cdot 7^{2} \cdot 17^{2} \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(12.989455\) |
\(0.259789\) |
$[184,-45356,-3194113,283220]$ |
$[92,7912,163521,-11888953,70805]$ |
$[\frac{6590815232}{70805},\frac{6160979456}{70805},\frac{1384041744}{70805}]$ |
$y^2 + xy = 7x^5 - 12x^4 + 7x^3 - 3x^2 + x$ |
10115.c.70805.1 |
10115.c |
\( 5 \cdot 7 \cdot 17^{2} \) |
\( 5 \cdot 7^{2} \cdot 17^{2} \) |
$0$ |
$1$ |
$\Z/4\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(9.537419\) |
\(1.192177\) |
$[176,-1292,-23681,283220]$ |
$[88,538,-1055,-95571,70805]$ |
$[\frac{5277319168}{70805},\frac{366631936}{70805},-\frac{1633984}{14161}]$ |
$y^2 + xy = x^5 - x^4 + x$ |
10121.a.293509.1 |
10121.a |
\( 29 \cdot 349 \) |
\( 29^{2} \cdot 349 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.042928\) |
\(10.777185\) |
\(0.925276\) |
$[640,-512,-234048,1174036]$ |
$[320,4352,94272,2806784,293509]$ |
$[\frac{3355443200000}{293509},\frac{142606336000}{293509},\frac{9653452800}{293509}]$ |
$y^2 + y = x^5 + 2x^4 + 4x + 3$ |
10125.a.10125.1 |
10125.a |
\( 3^{4} \cdot 5^{3} \) |
\( 3^{4} \cdot 5^{3} \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$0$ |
|
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.094033\) |
\(11.744269\) |
\(1.104351\) |
$[420,6705,902025,1296000]$ |
$[105,180,-1700,-52725,10125]$ |
$[1260525,20580,-\frac{16660}{9}]$ |
$y^2 + (x^3 + x + 1)y = -x^2 + x - 1$ |
10125.a.10125.2 |
10125.a |
\( 3^{4} \cdot 5^{3} \) |
\( 3^{4} \cdot 5^{3} \) |
$1$ |
$1$ |
$\Z/5\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$0$ |
|
✓ |
✓ |
$1$ |
\( 1 \) |
\(2.350830\) |
\(11.744269\) |
\(1.104351\) |
$[27780,151768305,775034217225,1296000]$ |
$[6945,-4313970,2210480200,-814638042975,10125]$ |
$[1595755016890725,-142724601457530,\frac{94771685998760}{9}]$ |
$y^2 + (x^3 + x^2 + 1)y = 9x^4 + 28x^3 - x^2 - 34x + 13$ |
10130.a.162080.1 |
10130.a |
\( 2 \cdot 5 \cdot 1013 \) |
\( 2^{5} \cdot 5 \cdot 1013 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.134122\) |
\(5.992174\) |
\(0.803683\) |
$[2144,5248,3753415,648320]$ |
$[1072,47008,2695089,169845836,162080]$ |
$[\frac{44240899506176}{5065},\frac{1809698189312}{5065},\frac{96786036168}{5065}]$ |
$y^2 + (x^3 + x^2)y = -x^4 + 3x^2 - 5x - 10$ |
10137.a.10137.1 |
10137.a |
\( 3 \cdot 31 \cdot 109 \) |
\( 3 \cdot 31 \cdot 109 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.20.2 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.057474\) |
\(12.967735\) |
\(0.745306\) |
$[2628,3417,2633517,1297536]$ |
$[657,17843,645873,26491478,10137]$ |
$[\frac{40804268165019}{3379},\frac{1686718970433}{3379},\frac{92930144859}{3379}]$ |
$y^2 + (x^3 + x + 1)y = -2x^4 + 4x^2 - x - 4$ |