Properties

Label 10115.a.10115.1
Conductor $10115$
Discriminant $10115$
Mordell-Weil group \(\Z \times \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + x)y = -x^4 + 3x^2 + x - 2$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + xz^2)y = -x^4z^2 + 3x^2z^4 + xz^5 - 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 - x^4 + 2x^3 + 13x^2 + 4x - 8$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-2, 1, 3, 0, -1]), R([0, 1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-2, 1, 3, 0, -1], R![0, 1, 1, 1]);
 
sage: X = HyperellipticCurve(R([-8, 4, 13, 2, -1, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(10115\) \(=\) \( 5 \cdot 7 \cdot 17^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(10115\) \(=\) \( 5 \cdot 7 \cdot 17^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1236\) \(=\)  \( 2^{2} \cdot 3 \cdot 103 \)
\( I_4 \)  \(=\) \(3825\) \(=\)  \( 3^{2} \cdot 5^{2} \cdot 17 \)
\( I_6 \)  \(=\) \(1561977\) \(=\)  \( 3^{3} \cdot 17 \cdot 41 \cdot 83 \)
\( I_{10} \)  \(=\) \(1294720\) \(=\)  \( 2^{7} \cdot 5 \cdot 7 \cdot 17^{2} \)
\( J_2 \)  \(=\) \(309\) \(=\)  \( 3 \cdot 103 \)
\( J_4 \)  \(=\) \(3819\) \(=\)  \( 3 \cdot 19 \cdot 67 \)
\( J_6 \)  \(=\) \(60281\) \(=\)  \( 13 \cdot 4637 \)
\( J_8 \)  \(=\) \(1010517\) \(=\)  \( 3 \cdot 167 \cdot 2017 \)
\( J_{10} \)  \(=\) \(10115\) \(=\)  \( 5 \cdot 7 \cdot 17^{2} \)
\( g_1 \)  \(=\) \(2817036000549/10115\)
\( g_2 \)  \(=\) \(112674359151/10115\)
\( g_3 \)  \(=\) \(5755690161/10115\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (-2 : 2 : 1),\, (-2 : 4 : 1)\)
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (-2 : 2 : 1),\, (-2 : 4 : 1)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (-2 : -2 : 1),\, (-2 : 2 : 1)\)

magma: [C![-2,2,1],C![-2,4,1],C![1,-1,0],C![1,0,0]]; // minimal model
 
magma: [C![-2,-2,1],C![-2,2,1],C![1,-1,0],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \times \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.269551\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.269551\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + xz^2\) \(0.269551\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z - xz^2\) \(0\) \(2\)

2-torsion field: 6.2.8185058000.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 0.269551 \)
Real period: \( 11.75100 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.791876 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(5\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 5 T^{2} )\)
\(7\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 7 T^{2} )\)
\(17\) \(2\) \(2\) \(1\) \(1 + 2 T + 17 T^{2}\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).