Properties

Label 10048.b.160768.1
Conductor $10048$
Discriminant $-160768$
Mordell-Weil group \(\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2)y = x^4 + 3x^3 + 5x^2 + 4x + 2$ (homogenize, simplify)
$y^2 + (x^3 + x^2z)y = x^4z^2 + 3x^3z^3 + 5x^2z^4 + 4xz^5 + 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 + 5x^4 + 12x^3 + 20x^2 + 16x + 8$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, 4, 5, 3, 1]), R([0, 0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, 4, 5, 3, 1], R![0, 0, 1, 1]);
 
sage: X = HyperellipticCurve(R([8, 16, 20, 12, 5, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(10048\) \(=\) \( 2^{6} \cdot 157 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-160768\) \(=\) \( - 2^{10} \cdot 157 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(172\) \(=\)  \( 2^{2} \cdot 43 \)
\( I_4 \)  \(=\) \(679\) \(=\)  \( 7 \cdot 97 \)
\( I_6 \)  \(=\) \(25648\) \(=\)  \( 2^{4} \cdot 7 \cdot 229 \)
\( I_{10} \)  \(=\) \(20096\) \(=\)  \( 2^{7} \cdot 157 \)
\( J_2 \)  \(=\) \(172\) \(=\)  \( 2^{2} \cdot 43 \)
\( J_4 \)  \(=\) \(780\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
\( J_6 \)  \(=\) \(10608\) \(=\)  \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \)
\( J_8 \)  \(=\) \(304044\) \(=\)  \( 2^{2} \cdot 3 \cdot 13 \cdot 1949 \)
\( J_{10} \)  \(=\) \(160768\) \(=\)  \( 2^{10} \cdot 157 \)
\( g_1 \)  \(=\) \(147008443/157\)
\( g_2 \)  \(=\) \(15503865/628\)
\( g_3 \)  \(=\) \(1225887/628\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (-1 : -1 : 1),\, (-1 : 1 : 1),\, (1 : 3 : 1),\, (1 : -5 : 1)\)
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (-1 : -1 : 1),\, (-1 : 1 : 1),\, (1 : 3 : 1),\, (1 : -5 : 1)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (-1 : -2 : 1),\, (-1 : 2 : 1),\, (1 : -8 : 1),\, (1 : 8 : 1)\)

magma: [C![-1,-1,1],C![-1,1,1],C![1,-5,1],C![1,-1,0],C![1,0,0],C![1,3,1]]; // minimal model
 
magma: [C![-1,-2,1],C![-1,2,1],C![1,-8,1],C![1,-1,0],C![1,1,0],C![1,8,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.009995\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.009995\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -2 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z - 2z^3\) \(0.009995\) \(\infty\)

2-torsion field: 6.0.160768.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.009995 \)
Real period: \( 12.04734 \)
Tamagawa product: \( 9 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.083806 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(6\) \(10\) \(9\) \(1 - T\)
\(157\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 7 T + 157 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).