Properties

Label 10086.a.181548.1
Conductor $10086$
Discriminant $181548$
Mordell-Weil group \(\Z \times \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more

Show commands: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^5 + x^4 + x^3 + 2x^2 + 2x + 1$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z + x^4z^2 + x^3z^3 + 2x^2z^4 + 2xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 + 5x^4 + 6x^3 + 9x^2 + 8x + 4$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, 2, 2, 1, 1, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 2, 2, 1, 1, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([4, 8, 9, 6, 5, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(10086\) \(=\) \( 2 \cdot 3 \cdot 41^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(181548\) \(=\) \( 2^{2} \cdot 3^{3} \cdot 41^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(388\) \(=\)  \( 2^{2} \cdot 97 \)
\( I_4 \)  \(=\) \(11521\) \(=\)  \( 41 \cdot 281 \)
\( I_6 \)  \(=\) \(1128033\) \(=\)  \( 3^{3} \cdot 41 \cdot 1019 \)
\( I_{10} \)  \(=\) \(23238144\) \(=\)  \( 2^{9} \cdot 3^{3} \cdot 41^{2} \)
\( J_2 \)  \(=\) \(97\) \(=\)  \( 97 \)
\( J_4 \)  \(=\) \(-88\) \(=\)  \( - 2^{3} \cdot 11 \)
\( J_6 \)  \(=\) \(-620\) \(=\)  \( - 2^{2} \cdot 5 \cdot 31 \)
\( J_8 \)  \(=\) \(-16971\) \(=\)  \( - 3 \cdot 5657 \)
\( J_{10} \)  \(=\) \(181548\) \(=\)  \( 2^{2} \cdot 3^{3} \cdot 41^{2} \)
\( g_1 \)  \(=\) \(8587340257/181548\)
\( g_2 \)  \(=\) \(-20078806/45387\)
\( g_3 \)  \(=\) \(-1458395/45387\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (1 : 2 : 1),\, (1 : -4 : 1)\)
All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (1 : 2 : 1),\, (1 : -4 : 1)\)
All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (0 : -2 : 1),\, (0 : 2 : 1),\, (1 : -6 : 1),\, (1 : 6 : 1)\)

magma: [C![-1,0,1],C![0,-1,1],C![0,1,1],C![1,-4,1],C![1,0,0],C![1,2,1]]; // minimal model
 
magma: [C![-1,0,1],C![0,-2,1],C![0,2,1],C![1,-6,1],C![1,0,0],C![1,6,1]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \times \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -4 : 1) - 2 \cdot(1 : 0 : 0)\) \((-x + z) x\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 - z^3\) \(0.058560\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -4 : 1) - 2 \cdot(1 : 0 : 0)\) \((-x + z) x\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 - z^3\) \(0.058560\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : -2 : 1) + (1 : -6 : 1) - 2 \cdot(1 : 0 : 0)\) \((-x + z) x\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - 5xz^2 - 2z^3\) \(0.058560\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2\) \(0\) \(2\)

2-torsion field: 4.0.20172.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 0.058560 \)
Real period: \( 10.58502 \)
Tamagawa product: \( 6 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.929797 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 - T + 2 T^{2} )\)
\(3\) \(1\) \(3\) \(3\) \(( 1 - T )( 1 + 2 T + 3 T^{2} )\)
\(41\) \(2\) \(2\) \(1\) \(1 + 2 T + 41 T^{2}\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).