Properties

Label 10115.b.70805.1
Conductor $10115$
Discriminant $70805$
Mordell-Weil group \(\Z/{10}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more

Show commands: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = 7x^5 - 12x^4 + 7x^3 - 3x^2 + x$ (homogenize, simplify)
$y^2 + xz^2y = 7x^5z - 12x^4z^2 + 7x^3z^3 - 3x^2z^4 + xz^5$ (dehomogenize, simplify)
$y^2 = 28x^5 - 48x^4 + 28x^3 - 11x^2 + 4x$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, -3, 7, -12, 7]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, -3, 7, -12, 7], R![0, 1]);
 
sage: X = HyperellipticCurve(R([0, 4, -11, 28, -48, 28]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(10115\) \(=\) \( 5 \cdot 7 \cdot 17^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(70805\) \(=\) \( 5 \cdot 7^{2} \cdot 17^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(184\) \(=\)  \( 2^{3} \cdot 23 \)
\( I_4 \)  \(=\) \(-45356\) \(=\)  \( - 2^{2} \cdot 17 \cdot 23 \cdot 29 \)
\( I_6 \)  \(=\) \(-3194113\) \(=\)  \( - 13 \cdot 17 \cdot 97 \cdot 149 \)
\( I_{10} \)  \(=\) \(283220\) \(=\)  \( 2^{2} \cdot 5 \cdot 7^{2} \cdot 17^{2} \)
\( J_2 \)  \(=\) \(92\) \(=\)  \( 2^{2} \cdot 23 \)
\( J_4 \)  \(=\) \(7912\) \(=\)  \( 2^{3} \cdot 23 \cdot 43 \)
\( J_6 \)  \(=\) \(163521\) \(=\)  \( 3^{2} \cdot 18169 \)
\( J_8 \)  \(=\) \(-11888953\) \(=\)  \( - 23 \cdot 516911 \)
\( J_{10} \)  \(=\) \(70805\) \(=\)  \( 5 \cdot 7^{2} \cdot 17^{2} \)
\( g_1 \)  \(=\) \(6590815232/70805\)
\( g_2 \)  \(=\) \(6160979456/70805\)
\( g_3 \)  \(=\) \(1384041744/70805\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 0 : 1),\, (1 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 0 : 1),\, (1 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (1 : 1 : 1)\)

magma: [C![0,0,1],C![1,-1,1],C![1,0,0],C![1,0,1]]; // minimal model
 
magma: [C![0,0,1],C![1,-1,1],C![1,0,0],C![1,1,1]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{10}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(10\)
Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(10\)
Generator $D_0$ Height Order
\((1 : 1 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0\) \(10\)

2-torsion field: 4.0.5780.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 12.98945 \)
Tamagawa product: \( 2 \)
Torsion order:\( 10 \)
Leading coefficient: \( 0.259789 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(5\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 4 T + 5 T^{2} )\)
\(7\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 2 T + 7 T^{2} )\)
\(17\) \(2\) \(2\) \(1\) \(1 + 2 T + 17 T^{2}\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).