Properties

Label 10098.a.272646.1
Conductor $10098$
Discriminant $-272646$
Mordell-Weil group \(\Z/{2}\Z \times \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more

Show commands: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -9x^6 + 16x^5 - 35x^4 + 33x^3 - 35x^2 + 16x - 9$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -9x^6 + 16x^5z - 35x^4z^2 + 33x^3z^3 - 35x^2z^4 + 16xz^5 - 9z^6$ (dehomogenize, simplify)
$y^2 = -35x^6 + 64x^5 - 140x^4 + 134x^3 - 140x^2 + 64x - 35$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-9, 16, -35, 33, -35, 16, -9]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-9, 16, -35, 33, -35, 16, -9], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-35, 64, -140, 134, -140, 64, -35]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(10098\) \(=\) \( 2 \cdot 3^{3} \cdot 11 \cdot 17 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-272646\) \(=\) \( - 2 \cdot 3^{6} \cdot 11 \cdot 17 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(56004\) \(=\)  \( 2^{2} \cdot 3 \cdot 13 \cdot 359 \)
\( I_4 \)  \(=\) \(288321\) \(=\)  \( 3 \cdot 11 \cdot 8737 \)
\( I_6 \)  \(=\) \(5331417537\) \(=\)  \( 3 \cdot 19 \cdot 93533641 \)
\( I_{10} \)  \(=\) \(143616\) \(=\)  \( 2^{8} \cdot 3 \cdot 11 \cdot 17 \)
\( J_2 \)  \(=\) \(42003\) \(=\)  \( 3^{2} \cdot 13 \cdot 359 \)
\( J_4 \)  \(=\) \(73402380\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 407791 \)
\( J_6 \)  \(=\) \(170798965524\) \(=\)  \( 2^{2} \cdot 3^{4} \cdot 11 \cdot 17 \cdot 2819023 \)
\( J_8 \)  \(=\) \(446539889810043\) \(=\)  \( 3^{4} \cdot 198173 \cdot 27818311 \)
\( J_{10} \)  \(=\) \(272646\) \(=\)  \( 2 \cdot 3^{6} \cdot 11 \cdot 17 \)
\( g_1 \)  \(=\) \(179338702480653356667/374\)
\( g_2 \)  \(=\) \(3730727674118765970/187\)
\( g_3 \)  \(=\) \(1105214886926046\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\R$ and $\Q_{2}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \times \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(5x^2 - 2xz + 5z^2\) \(=\) \(0,\) \(50y\) \(=\) \(21xz^2 - 15z^3\) \(0\) \(2\)
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(5x^2 - 2xz + 5z^2\) \(=\) \(0,\) \(50y\) \(=\) \(21xz^2 - 15z^3\) \(0\) \(2\)
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(5x^2 - 2xz + 5z^2\) \(=\) \(0,\) \(50y\) \(=\) \(x^3 + 42xz^2 - 29z^3\) \(0\) \(2\)
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + z^3\) \(0\) \(2\)

2-torsion field: 8.0.405705964916736.150

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 3.494508 \)
Tamagawa product: \( 4 \)
Torsion order:\( 4 \)
Leading coefficient: \( 1.747254 \)
Analytic order of Ш: \( 2 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - T + 2 T^{2} )\)
\(3\) \(3\) \(6\) \(4\) \(1 + T\)
\(11\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 11 T^{2} )\)
\(17\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 2 T + 17 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 153.c
  Elliptic curve isogeny class 66.b

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).