Properties

Label 10043.a.10043.1
Conductor $10043$
Discriminant $-10043$
Mordell-Weil group \(\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more

Show commands: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^5 - 2x^4 - 3x^3 + x$ (homogenize, simplify)
$y^2 + z^3y = x^5z - 2x^4z^2 - 3x^3z^3 + xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 - 8x^4 - 12x^3 + 4x + 1$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 0, -3, -2, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 0, -3, -2, 1], R![1]);
 
sage: X = HyperellipticCurve(R([1, 4, 0, -12, -8, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(10043\) \(=\) \( 11^{2} \cdot 83 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-10043\) \(=\) \( - 11^{2} \cdot 83 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(376\) \(=\)  \( 2^{3} \cdot 47 \)
\( I_4 \)  \(=\) \(352\) \(=\)  \( 2^{5} \cdot 11 \)
\( I_6 \)  \(=\) \(24200\) \(=\)  \( 2^{3} \cdot 5^{2} \cdot 11^{2} \)
\( I_{10} \)  \(=\) \(-40172\) \(=\)  \( - 2^{2} \cdot 11^{2} \cdot 83 \)
\( J_2 \)  \(=\) \(188\) \(=\)  \( 2^{2} \cdot 47 \)
\( J_4 \)  \(=\) \(1414\) \(=\)  \( 2 \cdot 7 \cdot 101 \)
\( J_6 \)  \(=\) \(15756\) \(=\)  \( 2^{2} \cdot 3 \cdot 13 \cdot 101 \)
\( J_8 \)  \(=\) \(240683\) \(=\)  \( 101 \cdot 2383 \)
\( J_{10} \)  \(=\) \(-10043\) \(=\)  \( - 11^{2} \cdot 83 \)
\( g_1 \)  \(=\) \(-234849287168/10043\)
\( g_2 \)  \(=\) \(-9395566208/10043\)
\( g_3 \)  \(=\) \(-556880064/10043\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1)\)

magma: [C![0,-1,1],C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![0,-1,1],C![0,1,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.086103\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.086103\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.086103\) \(\infty\)

2-torsion field: 5.3.160688.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.086103 \)
Real period: \( 9.620047 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.828315 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(11\) \(2\) \(2\) \(1\) \(1 - 2 T + 11 T^{2}\)
\(83\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 9 T + 83 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).