Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^2 + 1)y = x^5 - 3x^4 + 3x^3 - 2x$ | (homogenize, simplify) |
$y^2 + (x^2z + z^3)y = x^5z - 3x^4z^2 + 3x^3z^3 - 2xz^5$ | (dehomogenize, simplify) |
$y^2 = 4x^5 - 11x^4 + 12x^3 + 2x^2 - 8x + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(10040\) | \(=\) | \( 2^{3} \cdot 5 \cdot 251 \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-502000\) | \(=\) | \( - 2^{4} \cdot 5^{3} \cdot 251 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(16\) | \(=\) | \( 2^{4} \) |
\( I_4 \) | \(=\) | \(-4076\) | \(=\) | \( - 2^{2} \cdot 1019 \) |
\( I_6 \) | \(=\) | \(38588\) | \(=\) | \( 2^{2} \cdot 11 \cdot 877 \) |
\( I_{10} \) | \(=\) | \(2008000\) | \(=\) | \( 2^{6} \cdot 5^{3} \cdot 251 \) |
\( J_2 \) | \(=\) | \(8\) | \(=\) | \( 2^{3} \) |
\( J_4 \) | \(=\) | \(682\) | \(=\) | \( 2 \cdot 11 \cdot 31 \) |
\( J_6 \) | \(=\) | \(-5796\) | \(=\) | \( - 2^{2} \cdot 3^{2} \cdot 7 \cdot 23 \) |
\( J_8 \) | \(=\) | \(-127873\) | \(=\) | \( -127873 \) |
\( J_{10} \) | \(=\) | \(502000\) | \(=\) | \( 2^{4} \cdot 5^{3} \cdot 251 \) |
\( g_1 \) | \(=\) | \(2048/31375\) | ||
\( g_2 \) | \(=\) | \(21824/31375\) | ||
\( g_3 \) | \(=\) | \(-23184/31375\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (1 : -1 : 1),\, (3 : 5 : 1),\, (3 : -15 : 1)\)
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) + (3 : -15 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - 3z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-5xz^2\) | \(0.045171\) | \(\infty\) |
\((1 : -1 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) + (3 : -15 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - 3z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-5xz^2\) | \(0.045171\) | \(\infty\) |
\((1 : -1 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 1 : 1) + (3 : -20 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - 3z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z - 10xz^2 + z^3\) | \(0.045171\) | \(\infty\) |
\((1 : 0 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z - z^3\) | \(0\) | \(2\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(1\) |
Mordell-Weil rank: | \(1\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 0.045171 \) |
Real period: | \( 11.06047 \) |
Tamagawa product: | \( 6 \) |
Torsion order: | \( 2 \) |
Leading coefficient: | \( 0.749431 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(3\) | \(4\) | \(2\) | \(-1^*\) | \(1 + T + 2 T^{2}\) | no | |
\(5\) | \(1\) | \(3\) | \(3\) | \(-1\) | \(( 1 - T )( 1 + 4 T + 5 T^{2} )\) | yes | |
\(251\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 - 6 T + 251 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.30.3 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).