# Properties

 Label 10037.a.10037.1 Conductor $10037$ Discriminant $10037$ Mordell-Weil group $$\Z \times \Z$$ Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\End(J) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands: SageMath / Magma

## Simplified equation

 $y^2 + y = x^5 + x^2$ (homogenize, simplify) $y^2 + z^3y = x^5z + x^2z^4$ (dehomogenize, simplify) $y^2 = 4x^5 + 4x^2 + 1$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 1, 0, 0, 1]), R([1]));

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 1, 0, 0, 1], R![1]);

sage: X = HyperellipticCurve(R([1, 0, 4, 0, 0, 4]))

magma: X,pi:= SimplifiedModel(C);

## Invariants

 Conductor: $$N$$ $$=$$ $$10037$$ $$=$$ $$10037$$ magma: Conductor(LSeries(C)); Factorization($1); Discriminant: $$\Delta$$ $$=$$ $$10037$$ $$=$$ $$10037$$ magma: Discriminant(C); Factorization(Integers()!$1);

### G2 invariants

 $$I_2$$ $$=$$ $$0$$ $$=$$ $$0$$ $$I_4$$ $$=$$ $$1200$$ $$=$$ $$2^{4} \cdot 3 \cdot 5^{2}$$ $$I_6$$ $$=$$ $$2304$$ $$=$$ $$2^{8} \cdot 3^{2}$$ $$I_{10}$$ $$=$$ $$-40148$$ $$=$$ $$- 2^{2} \cdot 10037$$ $$J_2$$ $$=$$ $$0$$ $$=$$ $$0$$ $$J_4$$ $$=$$ $$-200$$ $$=$$ $$- 2^{3} \cdot 5^{2}$$ $$J_6$$ $$=$$ $$256$$ $$=$$ $$2^{8}$$ $$J_8$$ $$=$$ $$-10000$$ $$=$$ $$- 2^{4} \cdot 5^{4}$$ $$J_{10}$$ $$=$$ $$10037$$ $$=$$ $$10037$$ $$g_1$$ $$=$$ $$0$$ $$g_2$$ $$=$$ $$-320000000000/100741369$$ $$g_3$$ $$=$$ $$-51200/10037$$

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);

## Automorphism group

 $$\mathrm{Aut}(X)$$ $$\simeq$$ $C_2$ magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$$C_2$magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);

## Rational points

 Known points: $$(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (0 : -1 : 1),\, (-1 : -1 : 1),\, (1 : 1 : 1),\, (1 : -2 : 1)$$ Known points: $$(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (0 : -1 : 1),\, (-1 : -1 : 1),\, (1 : 1 : 1),\, (1 : -2 : 1)$$ Known points: $$(1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (-1 : -1 : 1),\, (-1 : 1 : 1),\, (1 : -3 : 1),\, (1 : 3 : 1)$$

magma: [C![-1,-1,1],C![-1,0,1],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,0,0],C![1,1,1]]; // minimal model

magma: [C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-3,1],C![1,0,0],C![1,3,1]]; // simplified model

Number of rational Weierstrass points: $$1$$

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

## Mordell-Weil group of the Jacobian

Group structure: $$\Z \times \Z$$

magma: MordellWeilGroupGenus2(Jacobian(C));

Generator $D_0$ Height Order
$$D_0 - 2 \cdot(1 : 0 : 0)$$ $$x^2 - xz + z^2$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$0$$ $$0.557614$$ $$\infty$$
$$(0 : -1 : 1) - (1 : 0 : 0)$$ $$x$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$-z^3$$ $$0.048694$$ $$\infty$$
Generator $D_0$ Height Order
$$D_0 - 2 \cdot(1 : 0 : 0)$$ $$x^2 - xz + z^2$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$0$$ $$0.557614$$ $$\infty$$
$$(0 : -1 : 1) - (1 : 0 : 0)$$ $$x$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$-z^3$$ $$0.048694$$ $$\infty$$
Generator $D_0$ Height Order
$$D_0 - 2 \cdot(1 : 0 : 0)$$ $$x^2 - xz + z^2$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$z^3$$ $$0.557614$$ $$\infty$$
$$(0 : -1 : 1) - (1 : 0 : 0)$$ $$x$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$-z^3$$ $$0.048694$$ $$\infty$$

## BSD invariants

 Hasse-Weil conjecture: unverified Analytic rank: $$2$$ Mordell-Weil rank: $$2$$ 2-Selmer rank: $$2$$ Regulator: $$0.026888$$ Real period: $$16.21807$$ Tamagawa product: $$1$$ Torsion order: $$1$$ Leading coefficient: $$0.436076$$ Analytic order of Ш: $$1$$   (rounded) Order of Ш: square

## Local invariants

Prime ord($$N$$) ord($$\Delta$$) Tamagawa L-factor Cluster picture
$$10037$$ $$1$$ $$1$$ $$1$$ $$( 1 + T )( 1 + 176 T + 10037 T^{2} )$$

## Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

## Decomposition of the Jacobian

Simple over $$\overline{\Q}$$

## Endomorphisms of the Jacobian

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:

 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.