Learn more about

Refine search

Results (displaying matches 1-50 of at least 1000) Next

Label \(A\) \(\chi\) \(\operatorname{ord}(\chi)\) Dim. Decomp. AL-dims.
4001.2.a \(31.9481458487\) \( \chi_{ 4001 }(1, \cdot) \) \(1\) \(333\) \(149\)+\(184\) \(149\)+\(184\)
4002.2.a \(31.9561308889\) \( \chi_{ 4002 }(1, \cdot) \) \(1\) \(101\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(6\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\) \(6\)+\(5\)+\(8\)+\(7\)+\(4\)+\(8\)+\(6\)+\(6\)+\(8\)+\(5\)+\(4\)+\(9\)+\(5\)+\(9\)+\(9\)+\(2\)
4003.2.a \(31.9641159291\) \( \chi_{ 4003 }(1, \cdot) \) \(1\) \(333\) \(2\)+\(152\)+\(179\) \(154\)+\(179\)
4004.2.a \(31.9721009693\) \( \chi_{ 4004 }(1, \cdot) \) \(1\) \(60\) \(1\)+\(1\)+\(1\)+\(4\)+\(4\)+\(5\)+\(6\)+\(9\)+\(9\)+\(10\)+\(10\) \(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(10\)+\(6\)+\(4\)+\(10\)+\(6\)+\(10\)+\(10\)+\(4\)
4004.2.e \(31.9721009693\) \( \chi_{ 4004 }(3849, \cdot) \) \(2\) \(96\) \(48\)+\(48\)
4004.2.m \(31.9721009693\) \( \chi_{ 4004 }(2157, \cdot) \) \(2\) \(68\) \(2\)+\(30\)+\(36\)
4005.2.a \(31.9800860095\) \( \chi_{ 4005 }(1, \cdot) \) \(1\) \(148\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(4\)+\(4\)+\(4\)+\(6\)+\(7\)+\(8\)+\(9\)+\(10\)+\(10\)+\(10\)+\(12\)+\(12\)+\(17\)+\(17\) \(13\)+\(17\)+\(17\)+\(13\)+\(23\)+\(21\)+\(21\)+\(23\)
4006.2.a \(31.9880710497\) \( \chi_{ 4006 }(1, \cdot) \) \(1\) \(166\) \(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(31\)+\(40\)+\(42\)+\(46\) \(40\)+\(43\)+\(47\)+\(36\)
4007.2.a \(31.9960560899\) \( \chi_{ 4007 }(1, \cdot) \) \(1\) \(334\) \(139\)+\(195\) \(139\)+\(195\)
4008.2.a \(32.0040411301\) \( \chi_{ 4008 }(1, \cdot) \) \(1\) \(82\) \(1\)+\(\cdots\)+\(1\)+\(3\)+\(5\)+\(7\)+\(8\)+\(9\)+\(10\)+\(11\)+\(12\)+\(13\) \(10\)+\(11\)+\(14\)+\(7\)+\(8\)+\(11\)+\(9\)+\(12\)
4009.2.a \(32.0120261703\) \( \chi_{ 4009 }(1, \cdot) \) \(1\) \(315\) \(1\)+\(3\)+\(71\)+\(75\)+\(82\)+\(83\) \(75\)+\(84\)+\(82\)+\(74\)
4010.2.a \(32.0200112105\) \( \chi_{ 4010 }(1, \cdot) \) \(1\) \(135\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(9\)+\(10\)+\(12\)+\(15\)+\(17\)+\(20\)+\(22\)+\(22\) \(16\)+\(18\)+\(21\)+\(13\)+\(22\)+\(12\)+\(9\)+\(24\)
4011.2.a \(32.0279962507\) \( \chi_{ 4011 }(1, \cdot) \) \(1\) \(191\) \(1\)+\(\cdots\)+\(1\)+\(3\)+\(18\)+\(18\)+\(19\)+\(19\)+\(26\)+\(27\)+\(28\)+\(29\) \(19\)+\(29\)+\(29\)+\(19\)+\(29\)+\(19\)+\(19\)+\(28\)
4012.2.a \(32.0359812909\) \( \chi_{ 4012 }(1, \cdot) \) \(1\) \(76\) \(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(3\)+\(12\)+\(15\)+\(18\)+\(21\) \(0\)+\(0\)+\(0\)+\(0\)+\(19\)+\(17\)+\(19\)+\(21\)
4012.2.b \(32.0359812909\) \( \chi_{ 4012 }(237, \cdot) \) \(2\) \(86\) \(40\)+\(46\)
4013.2.a \(32.0439663311\) \( \chi_{ 4013 }(1, \cdot) \) \(1\) \(334\) \(1\)+\(157\)+\(176\) \(157\)+\(177\)
4014.2.a \(32.0519513713\) \( \chi_{ 4014 }(1, \cdot) \) \(1\) \(92\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\) \(9\)+\(9\)+\(18\)+\(10\)+\(9\)+\(9\)+\(10\)+\(18\)
4014.2.d \(32.0519513713\) \( \chi_{ 4014 }(4013, \cdot) \) \(2\) \(72\) \(72\)
4015.2.a \(32.0599364115\) \( \chi_{ 4015 }(1, \cdot) \) \(1\) \(239\) \(1\)+\(23\)+\(23\)+\(27\)+\(27\)+\(31\)+\(32\)+\(37\)+\(38\) \(32\)+\(27\)+\(27\)+\(32\)+\(38\)+\(23\)+\(23\)+\(37\)
4016.2.a \(32.0679214517\) \( \chi_{ 4016 }(1, \cdot) \) \(1\) \(125\) \(2\)+\(2\)+\(4\)+\(5\)+\(5\)+\(6\)+\(7\)+\(9\)+\(12\)+\(14\)+\(17\)+\(19\)+\(23\) \(21\)+\(42\)+\(31\)+\(31\)
4017.2.a \(32.0759064919\) \( \chi_{ 4017 }(1, \cdot) \) \(1\) \(203\) \(1\)+\(1\)+\(1\)+\(2\)+\(16\)+\(19\)+\(24\)+\(25\)+\(25\)+\(25\)+\(32\)+\(32\) \(26\)+\(24\)+\(25\)+\(27\)+\(32\)+\(18\)+\(19\)+\(32\)
4018.2.a \(32.0838915322\) \( \chi_{ 4018 }(1, \cdot) \) \(1\) \(138\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(6\)+\(\cdots\)+\(6\)+\(10\)+\(\cdots\)+\(10\) \(18\)+\(16\)+\(16\)+\(19\)+\(20\)+\(14\)+\(13\)+\(22\)
4019.2.a \(32.0918765724\) \( \chi_{ 4019 }(1, \cdot) \) \(1\) \(335\) \(149\)+\(186\) \(149\)+\(186\)
4020.2.a \(32.0998616126\) \( \chi_{ 4020 }(1, \cdot) \) \(1\) \(44\) \(1\)+\(4\)+\(4\)+\(4\)+\(5\)+\(6\)+\(6\)+\(7\)+\(7\) \(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(7\)+\(4\)+\(5\)+\(6\)+\(5\)+\(6\)+\(7\)+\(4\)
4020.2.f \(32.0998616126\) \( \chi_{ 4020 }(401, \cdot) \) \(2\) \(92\) \(46\)+\(46\)
4020.2.g \(32.0998616126\) \( \chi_{ 4020 }(1609, \cdot) \) \(2\) \(64\) \(2\)+\(24\)+\(38\)
4020.2.q \(32.0998616126\) \( \chi_{ 4020 }(841, \cdot) \) \(3\) \(92\) \(2\)+\(\cdots\)+\(2\)+\(4\)+\(12\)+\(14\)+\(22\)+\(24\)
4021.2.a \(32.1078466528\) \( \chi_{ 4021 }(1, \cdot) \) \(1\) \(334\) \(1\)+\(151\)+\(182\) \(152\)+\(182\)
4022.2.a \(32.115831693\) \( \chi_{ 4022 }(1, \cdot) \) \(1\) \(168\) \(1\)+\(3\)+\(31\)+\(37\)+\(46\)+\(50\) \(37\)+\(47\)+\(50\)+\(34\)
4023.2.a \(32.1238167332\) \( \chi_{ 4023 }(1, \cdot) \) \(1\) \(198\) \(18\)+\(18\)+\(24\)+\(24\)+\(25\)+\(25\)+\(32\)+\(32\) \(43\)+\(57\)+\(56\)+\(42\)
4024.2.a \(32.1318017734\) \( \chi_{ 4024 }(1, \cdot) \) \(1\) \(126\) \(1\)+\(1\)+\(1\)+\(28\)+\(29\)+\(33\)+\(33\) \(29\)+\(34\)+\(34\)+\(29\)
4025.2.a \(32.1397868136\) \( \chi_{ 4025 }(1, \cdot) \) \(1\) \(210\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(5\)+\(5\)+\(8\)+\(\cdots\)+\(8\)+\(12\)+\(12\)+\(14\)+\(\cdots\)+\(14\)+\(21\)+\(21\) \(27\)+\(22\)+\(31\)+\(18\)+\(29\)+\(27\)+\(21\)+\(35\)
4026.2.a \(32.1477718538\) \( \chi_{ 4026 }(1, \cdot) \) \(1\) \(101\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(5\)+\(6\)+\(6\)+\(7\)+\(7\)+\(7\)+\(8\)+\(9\) \(7\)+\(5\)+\(7\)+\(6\)+\(8\)+\(5\)+\(3\)+\(9\)+\(6\)+\(6\)+\(5\)+\(8\)+\(4\)+\(9\)+\(10\)+\(3\)
4027.2.a \(32.155756894\) \( \chi_{ 4027 }(1, \cdot) \) \(1\) \(335\) \(2\)+\(159\)+\(174\) \(159\)+\(176\)
4028.2.a \(32.1637419342\) \( \chi_{ 4028 }(1, \cdot) \) \(1\) \(78\) \(1\)+\(1\)+\(19\)+\(\cdots\)+\(19\) \(0\)+\(0\)+\(0\)+\(0\)+\(19\)+\(19\)+\(20\)+\(20\)
4028.2.c \(32.1637419342\) \( \chi_{ 4028 }(3497, \cdot) \) \(2\) \(82\) \(82\)
4029.2.a \(32.1717269744\) \( \chi_{ 4029 }(1, \cdot) \) \(1\) \(207\) \(1\)+\(1\)+\(2\)+\(3\)+\(18\)+\(22\)+\(22\)+\(25\)+\(25\)+\(25\)+\(31\)+\(32\) \(22\)+\(32\)+\(25\)+\(25\)+\(25\)+\(25\)+\(22\)+\(31\)
4030.2.a \(32.1797120146\) \( \chi_{ 4030 }(1, \cdot) \) \(1\) \(121\) \(1\)+\(2\)+\(6\)+\(\cdots\)+\(6\)+\(7\)+\(7\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(9\)+\(9\)+\(9\) \(7\)+\(9\)+\(10\)+\(6\)+\(8\)+\(7\)+\(6\)+\(9\)+\(8\)+\(7\)+\(6\)+\(9\)+\(6\)+\(8\)+\(9\)+\(6\)
4031.2.a \(32.1876970548\) \( \chi_{ 4031 }(1, \cdot) \) \(1\) \(323\) \(2\)+\(59\)+\(61\)+\(98\)+\(103\) \(61\)+\(103\)+\(100\)+\(59\)
4032.2.a \(32.195682095\) \( \chi_{ 4032 }(1, \cdot) \) \(1\) \(60\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\) \(6\)+\(8\)+\(9\)+\(8\)+\(6\)+\(4\)+\(9\)+\(10\)
4032.2.b \(32.195682095\) \( \chi_{ 4032 }(3583, \cdot) \) \(2\) \(78\) \(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(8\)+\(16\)
4032.2.c \(32.195682095\) \( \chi_{ 4032 }(2017, \cdot) \) \(2\) \(60\) \(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)
4032.2.h \(32.195682095\) \( \chi_{ 4032 }(575, \cdot) \) \(2\) \(48\) \(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(12\)
4032.2.i \(32.195682095\) \( \chi_{ 4032 }(1889, \cdot) \) \(2\) \(64\) \(8\)+\(8\)+\(48\)
4032.2.j \(32.195682095\) \( \chi_{ 4032 }(2591, \cdot) \) \(2\) \(48\) \(4\)+\(\cdots\)+\(4\)+\(16\)+\(16\)
4032.2.k \(32.195682095\) \( \chi_{ 4032 }(3905, \cdot) \) \(2\) \(64\) \(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(16\)+\(16\)
4032.2.p \(32.195682095\) \( \chi_{ 4032 }(1567, \cdot) \) \(2\) \(80\) \(4\)+\(\cdots\)+\(4\)+\(8\)+\(\cdots\)+\(8\)+\(12\)+\(12\)
4032.2.v \(32.195682095\) \( \chi_{ 4032 }(1583, \cdot) \) \(4\) \(96\) \(4\)+\(4\)+\(12\)+\(36\)+\(40\)
4033.2.a \(32.2036671352\) \( \chi_{ 4033 }(1, \cdot) \) \(1\) \(325\) \(1\)+\(1\)+\(77\)+\(79\)+\(82\)+\(85\) \(80\)+\(83\)+\(85\)+\(77\)
4034.2.a \(32.2116521754\) \( \chi_{ 4034 }(1, \cdot) \) \(1\) \(169\) \(33\)+\(35\)+\(49\)+\(52\) \(35\)+\(49\)+\(52\)+\(33\)
Next

In order to download results, determine the number of results.