Properties

Label 4028.2.c
Level 4028
Weight 2
Character orbit c
Rep. character \(\chi_{4028}(3497,\cdot)\)
Character field \(\Q\)
Dimension 82
Newforms 1
Sturm bound 1080
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 4028 = 2^{2} \cdot 19 \cdot 53 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4028.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 53 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(1080\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4028, [\chi])\).

Total New Old
Modular forms 546 82 464
Cusp forms 534 82 452
Eisenstein series 12 0 12

Trace form

\(82q \) \(\mathstrut -\mathstrut 8q^{7} \) \(\mathstrut -\mathstrut 82q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(82q \) \(\mathstrut -\mathstrut 8q^{7} \) \(\mathstrut -\mathstrut 82q^{9} \) \(\mathstrut +\mathstrut 4q^{13} \) \(\mathstrut +\mathstrut 4q^{15} \) \(\mathstrut -\mathstrut 4q^{17} \) \(\mathstrut -\mathstrut 58q^{25} \) \(\mathstrut -\mathstrut 16q^{29} \) \(\mathstrut -\mathstrut 12q^{37} \) \(\mathstrut -\mathstrut 32q^{43} \) \(\mathstrut +\mathstrut 8q^{47} \) \(\mathstrut +\mathstrut 98q^{49} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 4q^{57} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut +\mathstrut 8q^{63} \) \(\mathstrut +\mathstrut 28q^{69} \) \(\mathstrut -\mathstrut 8q^{77} \) \(\mathstrut +\mathstrut 154q^{81} \) \(\mathstrut -\mathstrut 20q^{89} \) \(\mathstrut +\mathstrut 48q^{91} \) \(\mathstrut -\mathstrut 56q^{93} \) \(\mathstrut -\mathstrut 44q^{97} \) \(\mathstrut -\mathstrut 8q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(4028, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
4028.2.c.a \(82\) \(32.164\) None \(0\) \(0\) \(0\) \(-8\)

Decomposition of \(S_{2}^{\mathrm{old}}(4028, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4028, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(53, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(106, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(212, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1007, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2014, [\chi])\)\(^{\oplus 2}\)