The database currently contains information on $S_k(\Gamma_0(N))$ for $(k,N)$ in the ranges $[2,12]\times [1,100]$ and $[2,40]\times [1,25]$, and on $S_k(\Gamma_1(N))$ in the ranges $[2,10]\times [1,50]$ and $[2,20]\times [1,16]$. More data is being added continually.

Switch to \(\Gamma_1(N)\)

Browse holomorphic newforms for \(\Gamma_0(N)\)

The table below gives the dimensions of the space of holomorphic newforms of integral weight for \(\Gamma_0(N)\) , with trivial character.
Weight Level \(N\)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 2 1
4 0 0 0 0 1 1 1 1 1 1 2 1 3 2 2 1 4 1 4 1 4 3 5 1
6 0 0 1 1 1 1 3 1 1 3 4 0 5 2 4 2 6 3 8 1 4 5 9 3
8 0 1 1 0 3 1 3 2 3 1 6 2 7 4 4 3 10 2 10 3 8 5 13 3
10 0 1 2 1 3 1 5 2 3 3 8 1 9 4 6 4 12 4 14 3 8 7 17 5
12 1 0 1 1 3 3 5 3 4 5 8 2 11 6 8 5 14 5 16 3 12 11 19 5
The dimension is clickable whenever the Hecke orbits are stored for that space.

Change the range covered by the table

Level range:
Weight range:
Group: \(\Gamma_0(N)\)  \(\Gamma_1(N)\)

Find a specific cusp form from the database

Search by label of a form, or of a space of forms
e.g. 1.12.1.a or 11.6