Show commands for: pari sage

Dirichlet character groups of first conductors

modulus order structure first characters
3 2 \(C_{2}\) \(\chi_{3}(1,\cdot)\) \(\chi_{3}(2,\cdot)\)
4 2 \(C_{2}\) \(\chi_{4}(1,\cdot)\) \(\chi_{4}(3,\cdot)\)
5 4 \(C_{4}\) \(\chi_{5}(1,\cdot)\) \(\chi_{5}(2,\cdot)\) \(\chi_{5}(3,\cdot)\) \(\chi_{5}(4,\cdot)\)
7 6 \(C_{6}\) \(\chi_{7}(1,\cdot)\) \(\chi_{7}(2,\cdot)\) \(\chi_{7}(3,\cdot)\) \(\chi_{7}(4,\cdot)\) \(\chi_{7}(5,\cdot)\) \(\chi_{7}(6,\cdot)\)
8 4 \(C_{2}\times C_{2}\) \(\chi_{8}(1,\cdot)\) \(\chi_{8}(3,\cdot)\) \(\chi_{8}(5,\cdot)\) \(\chi_{8}(7,\cdot)\)
9 6 \(C_{6}\) \(\chi_{9}(1,\cdot)\) \(\chi_{9}(2,\cdot)\) \(\chi_{9}(4,\cdot)\) \(\chi_{9}(5,\cdot)\) \(\chi_{9}(7,\cdot)\) \(\chi_{9}(8,\cdot)\)
11 10 \(C_{10}\) \(\chi_{11}(1,\cdot)\) \(\chi_{11}(2,\cdot)\) \(\chi_{11}(3,\cdot)\) \(\chi_{11}(4,\cdot)\) \(\chi_{11}(5,\cdot)\) \(\chi_{11}(6,\cdot)\) \(\chi_{11}(7,\cdot)\) \(\chi_{11}(8,\cdot)\) \(\chi_{11}(9,\cdot)\) \(\chi_{11}(10,\cdot)\)
12 4 \(C_{2}\times C_{2}\) \(\chi_{12}(1,\cdot)\) \(\chi_{12}(5,\cdot)\) \(\chi_{12}(7,\cdot)\) \(\chi_{12}(11,\cdot)\)
13 12 \(C_{12}\) \(\chi_{13}(1,\cdot)\) \(\chi_{13}(2,\cdot)\) \(\chi_{13}(3,\cdot)\) \(\chi_{13}(4,\cdot)\) \(\chi_{13}(5,\cdot)\) \(\chi_{13}(6,\cdot)\) \(\chi_{13}(7,\cdot)\) \(\chi_{13}(8,\cdot)\) \(\chi_{13}(9,\cdot)\) \(\chi_{13}(10,\cdot)\) \(\chi_{13}(11,\cdot)\) \(\chi_{13}(12,\cdot)\)
15 8 \(C_{2}\times C_{4}\) \(\chi_{15}(1,\cdot)\) \(\chi_{15}(2,\cdot)\) \(\chi_{15}(4,\cdot)\) \(\chi_{15}(7,\cdot)\) \(\chi_{15}(8,\cdot)\) \(\chi_{15}(11,\cdot)\) \(\chi_{15}(13,\cdot)\) \(\chi_{15}(14,\cdot)\)
16 8 \(C_{2}\times C_{4}\) \(\chi_{16}(1,\cdot)\) \(\chi_{16}(3,\cdot)\) \(\chi_{16}(5,\cdot)\) \(\chi_{16}(7,\cdot)\) \(\chi_{16}(9,\cdot)\) \(\chi_{16}(11,\cdot)\) \(\chi_{16}(13,\cdot)\) \(\chi_{16}(15,\cdot)\)
17 16 \(C_{16}\) \(\chi_{17}(1,\cdot)\) \(\chi_{17}(2,\cdot)\) \(\chi_{17}(3,\cdot)\) \(\chi_{17}(4,\cdot)\) \(\chi_{17}(5,\cdot)\) \(\chi_{17}(6,\cdot)\) \(\chi_{17}(7,\cdot)\) \(\chi_{17}(8,\cdot)\) \(\chi_{17}(9,\cdot)\) \(\chi_{17}(10,\cdot)\) \(\chi_{17}(11,\cdot)\) \(\chi_{17}(12,\cdot)\) \(\chi_{17}(13,\cdot)\) \(\chi_{17}(14,\cdot)\) \(\chi_{17}(15,\cdot)\) \(\chi_{17}(16,\cdot)\)
19 18 \(C_{18}\) \(\chi_{19}(1,\cdot)\) \(\chi_{19}(2,\cdot)\) \(\chi_{19}(3,\cdot)\) \(\chi_{19}(4,\cdot)\) \(\chi_{19}(5,\cdot)\) \(\chi_{19}(6,\cdot)\) \(\chi_{19}(7,\cdot)\) \(\chi_{19}(8,\cdot)\) \(\chi_{19}(9,\cdot)\) \(\chi_{19}(10,\cdot)\) \(\chi_{19}(11,\cdot)\) \(\chi_{19}(12,\cdot)\) \(\chi_{19}(13,\cdot)\) \(\chi_{19}(14,\cdot)\) \(\chi_{19}(15,\cdot)\) \(\chi_{19}(16,\cdot)\) \(\chi_{19}(17,\cdot)\) \(\chi_{19}(18,\cdot)\)
20 8 \(C_{2}\times C_{4}\) \(\chi_{20}(1,\cdot)\) \(\chi_{20}(3,\cdot)\) \(\chi_{20}(7,\cdot)\) \(\chi_{20}(9,\cdot)\) \(\chi_{20}(11,\cdot)\) \(\chi_{20}(13,\cdot)\) \(\chi_{20}(17,\cdot)\) \(\chi_{20}(19,\cdot)\)
21 12 \(C_{2}\times C_{6}\) \(\chi_{21}(1,\cdot)\) \(\chi_{21}(2,\cdot)\) \(\chi_{21}(4,\cdot)\) \(\chi_{21}(5,\cdot)\) \(\chi_{21}(8,\cdot)\) \(\chi_{21}(10,\cdot)\) \(\chi_{21}(11,\cdot)\) \(\chi_{21}(13,\cdot)\) \(\chi_{21}(16,\cdot)\) \(\chi_{21}(17,\cdot)\) \(\chi_{21}(19,\cdot)\) \(\chi_{21}(20,\cdot)\)
23 22 \(C_{22}\) \(\chi_{23}(1,\cdot)\) \(\chi_{23}(2,\cdot)\) \(\chi_{23}(3,\cdot)\) \(\chi_{23}(4,\cdot)\) \(\chi_{23}(5,\cdot)\) \(\chi_{23}(6,\cdot)\) \(\chi_{23}(7,\cdot)\) \(\chi_{23}(8,\cdot)\) \(\chi_{23}(9,\cdot)\) \(\chi_{23}(10,\cdot)\) \(\chi_{23}(11,\cdot)\) \(\chi_{23}(12,\cdot)\) \(\chi_{23}(13,\cdot)\) \(\chi_{23}(14,\cdot)\) \(\chi_{23}(15,\cdot)\) \(\chi_{23}(16,\cdot)\) \(\chi_{23}(17,\cdot)\) \(\chi_{23}(18,\cdot)\) \(\chi_{23}(19,\cdot)\) \(\chi_{23}(20,\cdot)\) \(\chi_{23}(21,\cdot)\) \(\chi_{23}(22,\cdot)\)
24 8 \(C_{2}\times C_{2}\times C_{2}\) \(\chi_{24}(1,\cdot)\) \(\chi_{24}(5,\cdot)\) \(\chi_{24}(7,\cdot)\) \(\chi_{24}(11,\cdot)\) \(\chi_{24}(13,\cdot)\) \(\chi_{24}(17,\cdot)\) \(\chi_{24}(19,\cdot)\) \(\chi_{24}(23,\cdot)\)