Learn more about

Imprimitive
Primitive
The table below displays Dirichlet characters of a given modulus \(q\) and index \(n\). If \(q\) is the modulus, then each integer \(n\) (on the \(q\)-th row) represents the Dirichlet character \(\chi_{q}(n,·)\). The characters are grouped with respect to order and stacked integers indicate (complex) conjugate characters.
Modulus Order
1 2 3 4 5 6 more
41
1
40
9
32
10
37
16
18
3
14
27
38
4
31
23
25
2
21
5
33
8
36
20
39
6
7
11
15
12
24
13
19
17
29
22
28
26
30
34
35
42
1
13
29
41
25
37
5
17
11
23
19
31
43
1
42
6
36
7
37
4
11
16
35
21
41
2
22
8
27
32
39
9
24
10
13
14
40
15
23
17
38
25
31
3
29
5
26
12
18
19
34
20
28
30
33
44
1
21
23
43
5
9
25
37
3
15
7
19
13
17
27
31
29
41
35
39
45
1
19
26
44
16
31
8
17
28
37
4
34
11
41
14
29
2
23
7
13
22
43
32
38
46
1
45
3
31
9
41
13
39
25
35
27
29
5
37
7
33
11
21
15
43
17
19
47
1
46
2
24
3
16
4
12
6
8
7
27
9
21
14
37
17
36
18
34
25
32
28
42
5
19
10
33
11
30
13
29
15
22
20
40
23
45
26
38
31
44
35
43
39
41
48
1
7
17
23
25
31
41
47
5
29
11
35
13
37
19
43
49
1
48
18
30
19
31
8
43
15
36
22
29
6
41
13
34
20
27
2
25
4
37
9
11
16
46
23
32
39
44
3
33
5
10
12
45
17
26
24
47
38
40
50
1
49
7
43
11
41
21
31
9
39
19
29
3
17
13
27
23
37
33
47
51
1
16
35
50
4
13
38
47
2
26
8
32
19
43
25
49
5
41
7
22
10
46
11
14
20
23
28
31
29
44
37
40
52
1
25
27
51
9
29
5
21
31
47
3
35
17
49
23
43
7
15
11
19
33
41
37
45
53
1
52
23
30
10
16
13
49
15
46
24
42
28
36
44
47
4
40
6
9
7
38
11
29
17
25
37
43
2
27
3
18
5
32
8
20
12
31
14
19
21
48
22
41
26
51
33
45
34
39
35
50
54
1
53
19
37
17
35
7
31
13
25
43
49
5
11
23
47
29
41
55
1
21
34
54
12
23
32
43
16
31
26
36
4
14
6
46
9
49
19
29
24
39
41
51
2
28
3
37
7
8
13
17
18
52
27
53
38
42
47
48
56
1
13
15
27
29
41
43
55
9
25
3
19
5
45
11
51
17
33
23
39
31
47
37
53
57
1
20
37
56
7
49
8
50
11
26
31
46
4
43
16
25
28
55
2
29
5
23
10
40
13
22
14
53
17
47
32
41
34
52
35
44
58
1
57
17
41
7
25
23
53
45
49
5
35
9
13
33
51
3
39
11
37
15
31
19
55
21
47
27
43
59
1
58
3
20
4
15
5
12
7
17
9
46
16
48
19
28
21
45
22
51
25
26
27
35
29
57
36
41
49
53
2
30
6
10
8
37
11
43
13
50
14
38
18
23
24
32
31
40
33
34
39
56
42
52
44
55
47
54
60
1
11
19
29
31
41
49
59
7
43
13
37
17
53
23
47