Properties

Label 4020.2.g
Level 4020
Weight 2
Character orbit g
Rep. character \(\chi_{4020}(1609,\cdot)\)
Character field \(\Q\)
Dimension 64
Newforms 3
Sturm bound 1632
Trace bound 1

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 4020 = 2^{2} \cdot 3 \cdot 5 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4020.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 5 \)
Character field: \(\Q\)
Newforms: \( 3 \)
Sturm bound: \(1632\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4020, [\chi])\).

Total New Old
Modular forms 828 64 764
Cusp forms 804 64 740
Eisenstein series 24 0 24

Trace form

\(64q \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut -\mathstrut 64q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(64q \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut -\mathstrut 64q^{9} \) \(\mathstrut +\mathstrut 16q^{11} \) \(\mathstrut +\mathstrut 4q^{15} \) \(\mathstrut -\mathstrut 8q^{21} \) \(\mathstrut +\mathstrut 8q^{25} \) \(\mathstrut -\mathstrut 32q^{29} \) \(\mathstrut -\mathstrut 8q^{31} \) \(\mathstrut -\mathstrut 4q^{35} \) \(\mathstrut +\mathstrut 24q^{41} \) \(\mathstrut +\mathstrut 4q^{45} \) \(\mathstrut -\mathstrut 56q^{49} \) \(\mathstrut +\mathstrut 8q^{55} \) \(\mathstrut -\mathstrut 32q^{59} \) \(\mathstrut +\mathstrut 24q^{61} \) \(\mathstrut +\mathstrut 4q^{65} \) \(\mathstrut +\mathstrut 8q^{75} \) \(\mathstrut -\mathstrut 24q^{79} \) \(\mathstrut +\mathstrut 64q^{81} \) \(\mathstrut -\mathstrut 8q^{85} \) \(\mathstrut -\mathstrut 24q^{89} \) \(\mathstrut +\mathstrut 24q^{91} \) \(\mathstrut +\mathstrut 32q^{95} \) \(\mathstrut -\mathstrut 16q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(4020, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
4020.2.g.a \(2\) \(32.100\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(2\) \(0\) \(q+iq^{3}+(1-2i)q^{5}-q^{9}+2iq^{13}+\cdots\)
4020.2.g.b \(24\) \(32.100\) None \(0\) \(0\) \(-4\) \(0\)
4020.2.g.c \(38\) \(32.100\) None \(0\) \(0\) \(-2\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(4020, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4020, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(335, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(670, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1005, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2010, [\chi])\)\(^{\oplus 2}\)