Conductor 67
Order 3
Real No
Primitive No
Parity Even
Orbit Label 4020.q

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(4020)
sage: chi = H[841]
pari: [g,chi] = znchar(Mod(841,4020))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 67
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 3
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Even
Orbit label = 4020.q
Orbit index = 17

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{4020}(841,\cdot)\) \(\chi_{4020}(3781,\cdot)\)

Inducing primitive character


Values on generators

\((2011,2681,3217,1141)\) → \((1,1,1,e\left(\frac{1}{3}\right))\)


value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{3})\)