Properties

Label 4012.2.b
Level 4012
Weight 2
Character orbit b
Rep. character \(\chi_{4012}(237,\cdot)\)
Character field \(\Q\)
Dimension 86
Newforms 2
Sturm bound 1080
Trace bound 1

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 4012 = 2^{2} \cdot 17 \cdot 59 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4012.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 17 \)
Character field: \(\Q\)
Newforms: \( 2 \)
Sturm bound: \(1080\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4012, [\chi])\).

Total New Old
Modular forms 546 86 460
Cusp forms 534 86 448
Eisenstein series 12 0 12

Trace form

\(86q \) \(\mathstrut -\mathstrut 90q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(86q \) \(\mathstrut -\mathstrut 90q^{9} \) \(\mathstrut +\mathstrut 16q^{13} \) \(\mathstrut +\mathstrut 10q^{15} \) \(\mathstrut -\mathstrut 7q^{17} \) \(\mathstrut -\mathstrut 18q^{21} \) \(\mathstrut -\mathstrut 78q^{25} \) \(\mathstrut -\mathstrut 12q^{33} \) \(\mathstrut -\mathstrut 26q^{35} \) \(\mathstrut -\mathstrut 16q^{43} \) \(\mathstrut -\mathstrut 4q^{47} \) \(\mathstrut -\mathstrut 58q^{49} \) \(\mathstrut +\mathstrut 20q^{51} \) \(\mathstrut +\mathstrut 16q^{53} \) \(\mathstrut -\mathstrut 32q^{55} \) \(\mathstrut +\mathstrut 6q^{59} \) \(\mathstrut +\mathstrut 24q^{67} \) \(\mathstrut -\mathstrut 8q^{69} \) \(\mathstrut -\mathstrut 16q^{77} \) \(\mathstrut +\mathstrut 86q^{81} \) \(\mathstrut -\mathstrut 20q^{83} \) \(\mathstrut -\mathstrut 24q^{85} \) \(\mathstrut +\mathstrut 26q^{87} \) \(\mathstrut -\mathstrut 36q^{89} \) \(\mathstrut -\mathstrut 4q^{93} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(4012, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
4012.2.b.a \(40\) \(32.036\) None \(0\) \(0\) \(0\) \(0\)
4012.2.b.b \(46\) \(32.036\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(4012, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4012, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1003, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2006, [\chi])\)\(^{\oplus 2}\)