Properties

Label 4004.2.e
Level 4004
Weight 2
Character orbit e
Rep. character \(\chi_{4004}(3849,\cdot)\)
Character field \(\Q\)
Dimension 96
Newforms 2
Sturm bound 1344
Trace bound 7

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 4004 = 2^{2} \cdot 7 \cdot 11 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4004.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 77 \)
Character field: \(\Q\)
Newforms: \( 2 \)
Sturm bound: \(1344\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4004, [\chi])\).

Total New Old
Modular forms 684 96 588
Cusp forms 660 96 564
Eisenstein series 24 0 24

Trace form

\(96q \) \(\mathstrut -\mathstrut 96q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(96q \) \(\mathstrut -\mathstrut 96q^{9} \) \(\mathstrut +\mathstrut 4q^{11} \) \(\mathstrut +\mathstrut 16q^{15} \) \(\mathstrut +\mathstrut 8q^{23} \) \(\mathstrut -\mathstrut 88q^{25} \) \(\mathstrut -\mathstrut 32q^{37} \) \(\mathstrut +\mathstrut 20q^{49} \) \(\mathstrut -\mathstrut 16q^{53} \) \(\mathstrut +\mathstrut 8q^{67} \) \(\mathstrut +\mathstrut 24q^{77} \) \(\mathstrut +\mathstrut 128q^{81} \) \(\mathstrut -\mathstrut 8q^{91} \) \(\mathstrut +\mathstrut 72q^{93} \) \(\mathstrut -\mathstrut 80q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(4004, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
4004.2.e.a \(48\) \(31.972\) None \(0\) \(0\) \(0\) \(-4\)
4004.2.e.b \(48\) \(31.972\) None \(0\) \(0\) \(0\) \(4\)

Decomposition of \(S_{2}^{\mathrm{old}}(4004, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4004, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1001, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2002, [\chi])\)\(^{\oplus 2}\)