Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group Regulator
12.0.1911029760000.1 $x^{12} - 6 x^{11} + 17 x^{10} - 30 x^{9} + 42 x^{8} - 54 x^{7} + 69 x^{6} - 78 x^{5} + 68 x^{4} - 42 x^{3} + 19 x^{2} - 6 x + 1$ $2^{22}\cdot 3^{6}\cdot 5^{4}$ $S_3^2$ (as 12T16) trivial $39.8431596208$
12.0.7430465388544.3 $x^{12} + 2 x^{10} + 4 x^{8} - 4 x^{6} + 20 x^{4} - 16 x^{2} + 4$ $2^{22}\cdot 11^{6}$ $D_6$ (as 12T3) trivial $32.3759085892$
12.0.18238415044608.2 $x^{12} - 2 x^{11} + x^{10} + 10 x^{9} - 20 x^{8} + 18 x^{7} + 19 x^{6} - 58 x^{5} + 74 x^{4} - 50 x^{3} + 23 x^{2} - 6 x + 1$ $2^{22}\cdot 3^{3}\cdot 11^{5}$ $S_3\times D_4$ (as 12T28) trivial $55.4369397158$
12.0.20061226008576.3 $x^{12} - 6 x^{11} + 13 x^{10} - 10 x^{9} - 8 x^{8} + 26 x^{7} - 35 x^{6} + 38 x^{5} - 2 x^{4} - 42 x^{3} + 43 x^{2} - 18 x + 3$ $2^{22}\cdot 3^{14}$ $S_3^2$ (as 12T16) trivial $426.206248058$
12.0.20061226008576.4 $x^{12} + 6 x^{10} - 44 x^{6} + 60 x^{4} - 24 x^{2} + 4$ $2^{22}\cdot 3^{14}$ $D_6$ (as 12T3) trivial $251.029261158$
12.0.44767018745856.2 $x^{12} + 2 x^{10} + 4 x^{8} + 4 x^{6} + 4 x^{4} + 4$ $2^{22}\cdot 3^{6}\cdot 11^{4}$ $S_3 \times C_2^2$ (as 12T10) trivial $190.610034603$
12.0.157351936000000.1 $x^{12} + 2 x^{10} + 4 x^{8} + 12 x^{6} + 20 x^{4} + 16 x^{2} + 4$ $2^{22}\cdot 5^{6}\cdot 7^{4}$ $S_3 \times C_2^2$ (as 12T10) trivial $122.745231173$
12.0.197324726861824.13 $x^{12} - 2 x^{10} + 8 x^{8} - 4 x^{6} + 12 x^{4} + 8 x^{2} + 4$ $2^{22}\cdot 19^{6}$ $C_2 \times S_4$ (as 12T24) trivial $518.48125741$
12.0.197324726861824.14 $x^{12} - 10 x^{10} + 48 x^{8} - 92 x^{6} + 60 x^{4} + 8 x^{2} + 4$ $2^{22}\cdot 19^{6}$ $D_6$ (as 12T3) trivial $224.158987299$
12.4.1194393600000000.1 $x^{12} - 2 x^{11} + x^{10} + 10 x^{9} - 10 x^{8} + 22 x^{7} - 49 x^{6} + 22 x^{5} - 10 x^{4} + 10 x^{3} + x^{2} - 2 x + 1$ $2^{22}\cdot 3^{6}\cdot 5^{8}$ $S_3\times D_6$ (as 12T37) trivial $1182.004998281596$
12.0.1194393600000000.1 $x^{12} + 6 x^{10} + 24 x^{8} + 76 x^{6} + 156 x^{4} - 24 x^{2} + 4$ $2^{22}\cdot 3^{6}\cdot 5^{8}$ $D_6$ (as 12T3) $[3]$ $2540.93862393$
12.0.1624959306694656.21 $x^{12} + 40 x^{6} + 16$ $2^{22}\cdot 3^{18}$ $S_3^2$ (as 12T16) trivial $2884.21108845$
12.0.1624959306694656.35 $x^{12} - 6 x^{11} + 21 x^{10} - 42 x^{9} + 54 x^{8} - 54 x^{7} + 85 x^{6} - 174 x^{5} + 132 x^{4} + 42 x^{3} + 27 x^{2} - 198 x + 121$ $2^{22}\cdot 3^{18}$ $S_3^2$ (as 12T16) trivial $2679.51926649$
12.0.1721085137518592.1 $x^{12} - 2 x^{11} + 3 x^{10} - 14 x^{9} + 32 x^{8} - 70 x^{7} + 141 x^{6} - 162 x^{5} + 128 x^{4} - 110 x^{3} + 67 x^{2} - 14 x + 3$ $2^{22}\cdot 17^{7}$ $\SOPlus(4,2)$ (as 12T36) trivial $1064.01224806$
12.0.1721085137518592.3 $x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 242 x^{8} - 494 x^{7} + 893 x^{6} - 1262 x^{5} + 1594 x^{4} - 1514 x^{3} + 1309 x^{2} - 702 x + 387$ $2^{22}\cdot 17^{7}$ $\SOPlus(4,2)$ (as 12T35) trivial $554.099176051$
12.0.2494869834563584.3 $x^{12} - 2 x^{11} + 5 x^{10} - 6 x^{9} + 20 x^{8} - 2 x^{7} + 29 x^{6} + 2 x^{5} + 20 x^{4} + 6 x^{3} + 5 x^{2} + 2 x + 1$ $2^{22}\cdot 29^{6}$ $C_2\times S_5$ (as 12T123) trivial $2189.03641237$
12.0.2823801783975936.1 $x^{12} + 2 x^{10} - 12 x^{8} - 12 x^{6} + 68 x^{4} - 32 x^{2} + 4$ $2^{22}\cdot 3^{6}\cdot 31^{4}$ $C_6\times S_3$ (as 12T18) trivial $1601.5903013107045$
12.0.5416809268248576.4 $x^{12} + 6 x^{10} + 16 x^{8} + 76 x^{6} + 268 x^{4} + 440 x^{2} + 484$ $2^{22}\cdot 3^{6}\cdot 11^{6}$ $S_3 \times C_2^2$ (as 12T10) $[4]$ $993.836580487$
12.0.5416809268248576.6 $x^{12} - 6 x^{10} + 36 x^{8} + 108 x^{6} + 1620 x^{4} + 3888 x^{2} + 2916$ $2^{22}\cdot 3^{6}\cdot 11^{6}$ $D_6$ (as 12T3) $[4]$ $190.025322067$
12.0.5730523913650176.1 $x^{12} - 6 x^{10} + 28 x^{8} - 44 x^{6} + 52 x^{4} - 16 x^{2} + 4$ $2^{22}\cdot 3^{6}\cdot 37^{4}$ $S_3 \times C_2^2$ (as 12T10) trivial $2714.3632154424627$
12.4.7710244864000000.1 $x^{12} - 40 x^{8} - 28 x^{6} + 400 x^{4} - 560 x^{2} + 196$ $2^{22}\cdot 5^{6}\cdot 7^{6}$ $S_3 \times C_2^2$ (as 12T10) trivial $2595.29470898$
12.0.7710244864000000.1 $x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 140 x^{8} - 86 x^{7} + 25 x^{6} - 86 x^{5} + 140 x^{4} - 90 x^{3} + 29 x^{2} - 6 x + 1$ $2^{22}\cdot 5^{6}\cdot 7^{6}$ $D_6$ (as 12T3) $[2]$ $424.713505756$
12.0.7710244864000000.3 $x^{12} - 10 x^{10} + 48 x^{8} - 60 x^{6} + 76 x^{4} - 120 x^{2} + 100$ $2^{22}\cdot 5^{6}\cdot 7^{6}$ $D_6$ (as 12T3) $[2]$ $2203.99851885$
12.0.10453488727228416.1 $x^{12} - 18 x^{10} + 136 x^{8} - 548 x^{6} + 1228 x^{4} - 1432 x^{2} + 676$ $2^{22}\cdot 3^{6}\cdot 43^{4}$ $C_6\times S_3$ (as 12T18) trivial $2787.1636304529407$
12.0.10761436540174336.1 $x^{12} + 22 x^{10} + 120 x^{8} + 252 x^{6} + 220 x^{4} + 72 x^{2} + 4$ $2^{22}\cdot 37^{6}$ $D_6$ (as 12T3) $[5]$ $220.342128705$
12.0.25600000000000000.1 $x^{12} - 2 x^{11} + 9 x^{10} + 10 x^{9} - 10 x^{8} - 2 x^{7} + 9 x^{6} + 2 x^{5} - 10 x^{4} - 10 x^{3} + 9 x^{2} + 2 x + 1$ $2^{22}\cdot 5^{14}$ $C_2\times S_5$ (as 12T123) trivial $8678.54836379$
12.0.34828517376000000.2 $x^{12} - 2 x^{11} - x^{10} + 18 x^{9} + 32 x^{8} - 10 x^{7} + 13 x^{6} + 54 x^{5} + 46 x^{4} - 50 x^{3} + 5 x^{2} + 6 x + 9$ $2^{22}\cdot 3^{12}\cdot 5^{6}$ $S_3\times D_6$ (as 12T37) trivial $2554.499376495775$
12.0.48167003646590976.2 $x^{12} + 6 x^{10} + 48 x^{8} + 348 x^{6} + 1404 x^{4} + 2520 x^{2} + 1764$ $2^{22}\cdot 3^{14}\cdot 7^{4}$ $S_3 \times C_2^2$ (as 12T10) $[3]$ $4577.80021808165$
12.0.71234226397118464.23 $x^{12} + 18 x^{10} + 100 x^{8} + 228 x^{6} + 532 x^{4} + 1444$ $2^{22}\cdot 19^{8}$ $C_2\times S_4$ (as 12T21) $[2]$ $1572.04078258$
12.0.71234226397118464.25 $x^{12} - 4 x^{10} + 44 x^{8} - 156 x^{6} + 856 x^{4} + 912 x^{2} + 1444$ $2^{22}\cdot 19^{8}$ $C_2 \times S_4$ (as 12T24) $[2]$ $1475.57651563$
12.0.77720518656000000.2 $x^{12} - 2 x^{11} + 5 x^{10} - 10 x^{9} + 62 x^{8} - 194 x^{7} + 437 x^{6} - 610 x^{5} + 614 x^{4} - 362 x^{3} + 149 x^{2} - 10 x + 19$ $2^{22}\cdot 3^{4}\cdot 5^{6}\cdot 11^{4}$ $S_3\times D_6$ (as 12T37) trivial $6324.985393826281$
12.4.114709561344000000.1 $x^{12} - 4 x^{10} - 36 x^{8} - 8 x^{6} + 96 x^{4} - 160 x^{2} + 16$ $2^{22}\cdot 3^{6}\cdot 5^{6}\cdot 7^{4}$ $S_3\times D_6$ (as 12T37) trivial $17122.522249490798$
12.0.131...136.38 $x^{12} - 6 x^{11} + 21 x^{10} - 50 x^{9} + 90 x^{8} - 126 x^{7} + 129 x^{6} - 90 x^{5} + 180 x^{4} - 290 x^{3} + 111 x^{2} + 30 x + 25$ $2^{22}\cdot 3^{22}$ $D_6$ (as 12T3) trivial $21517.7627037$
12.0.131...136.44 $x^{12} + 60 x^{6} + 36$ $2^{22}\cdot 3^{22}$ $S_3^2$ (as 12T16) trivial $31629.4849309$
12.0.131...136.65 $x^{12} - 12 x^{9} + 336 x^{6} - 360 x^{3} + 108$ $2^{22}\cdot 3^{22}$ $S_3^2$ (as 12T16) trivial $27370.4191195$
12.0.131...136.67 $x^{12} - 6 x^{11} + 21 x^{10} - 50 x^{9} + 90 x^{8} - 126 x^{7} + 177 x^{6} - 234 x^{5} - 180 x^{4} + 670 x^{3} - 249 x^{2} - 114 x + 361$ $2^{22}\cdot 3^{22}$ $D_6$ (as 12T3) $[3, 3]$ $3703.01164497$
12.0.131...136.76 $x^{12} - 6 x^{11} + 21 x^{10} - 26 x^{9} - 18 x^{8} + 90 x^{7} + 57 x^{6} - 522 x^{5} + 882 x^{4} - 542 x^{3} + 489 x^{2} - 1050 x + 625$ $2^{22}\cdot 3^{22}$ $S_3^2$ (as 12T16) $[3]$ $7696.04332288$
12.0.209678066018942976.1 $x^{12} - 26 x^{10} + 272 x^{8} - 1356 x^{6} + 3036 x^{4} - 2104 x^{2} + 676$ $2^{22}\cdot 3^{6}\cdot 7^{4}\cdot 13^{4}$ $C_6\times S_3$ (as 12T18) $[3]$ $4699.920698268625$
12.4.224830740234240000.2 $x^{12} - 6 x^{11} + 13 x^{10} + 22 x^{9} - 222 x^{8} + 594 x^{7} - 711 x^{6} + 78 x^{5} + 1052 x^{4} - 1794 x^{3} + 1607 x^{2} - 826 x + 193$ $2^{22}\cdot 3^{6}\cdot 5^{4}\cdot 7^{6}$ $S_3\times D_6$ (as 12T37) trivial $19947.159000830226$
12.0.318180037037654016.1 $x^{12} - 8 x^{10} + 48 x^{8} - 124 x^{6} + 240 x^{4} - 32 x^{2} + 4$ $2^{22}\cdot 3^{6}\cdot 101^{4}$ $S_3 \times C_2^2$ (as 12T10) $[6]$ $7490.33305507108$
12.0.640000000000000000.5 $x^{12} - 6 x^{11} + 9 x^{10} + 10 x^{9} - 126 x^{7} + 201 x^{6} - 54 x^{5} + 120 x^{4} - 350 x^{3} + 289 x^{2} - 94 x + 11$ $2^{22}\cdot 5^{16}$ $C_2\times S_5$ (as 12T123) $[4]$ $3829.18466489$
12.0.956740143610331136.2 $x^{12} - 6 x^{11} + 29 x^{10} - 74 x^{9} + 156 x^{8} - 294 x^{7} + 725 x^{6} - 1674 x^{5} + 1960 x^{4} - 1878 x^{3} + 4761 x^{2} - 6970 x + 3475$ $2^{22}\cdot 3^{6}\cdot 7^{4}\cdot 19^{4}$ $C_6\times S_3$ (as 12T18) $[3]$ $11296.77782473664$
12.0.101...000.1 $x^{12} - 12 x^{10} + 108 x^{8} - 428 x^{6} + 1272 x^{4} - 72 x^{2} + 4$ $2^{22}\cdot 3^{18}\cdot 5^{4}$ $S_3 \times C_2^2$ (as 12T10) $[3]$ $19168.46386576396$
12.0.209...144.11 $x^{12} + 8 x^{10} - 12 x^{9} + 54 x^{8} - 28 x^{7} + 104 x^{6} - 264 x^{5} + 108 x^{4} - 160 x^{3} + 476 x^{2} + 88 x + 140$ $2^{22}\cdot 29^{8}$ $C_2\times S_5$ (as 12T123) $[4]$ $13920.343519$
12.0.282...000.1 $x^{12} - 16 x^{9} + 92 x^{6} + 96 x^{3} + 36$ $2^{22}\cdot 3^{16}\cdot 5^{6}$ $S_3\times D_6$ (as 12T37) trivial $31990.554279466513$
12.0.303...104.2 $x^{12} + 24 x^{10} + 208 x^{8} + 772 x^{6} + 1120 x^{4} + 512 x^{2} + 4$ $2^{22}\cdot 3^{6}\cdot 23^{2}\cdot 37^{4}$ $C_2^2\times S_4$ (as 12T48) $[20]$ $1105.0566726133131$
12.12.303...104.2 $x^{12} - 22 x^{10} + 156 x^{8} - 396 x^{6} + 308 x^{4} - 80 x^{2} + 4$ $2^{22}\cdot 3^{6}\cdot 23^{2}\cdot 37^{4}$ $C_2^2\times S_4$ (as 12T48) trivial $258565.4771921371$
12.0.303...104.4 $x^{12} + 12 x^{10} + 100 x^{8} + 436 x^{6} + 1384 x^{4} + 2024 x^{2} + 2116$ $2^{22}\cdot 3^{6}\cdot 23^{2}\cdot 37^{4}$ $C_2^2\times S_4$ (as 12T48) $[20]$ $3902.79606211808$
12.0.390...056.2 $x^{12} + 4 x^{6} + 196$ $2^{22}\cdot 3^{18}\cdot 7^{4}$ $C_6\times S_3$ (as 12T18) $[3]$ $49123.636581429666$
12.0.390...056.3 $x^{12} - 188 x^{6} + 9604$ $2^{22}\cdot 3^{18}\cdot 7^{4}$ $C_6\times S_3$ (as 12T18) $[3, 3]$ $12089.95102629321$
Next   To download results, determine the number of results.