Normalized defining polynomial
\( x^{12} - 22x^{10} + 156x^{8} - 396x^{6} + 308x^{4} - 80x^{2} + 4 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[12, 0]$ |
| |
| Discriminant: |
\(3031447150320943104\)
\(\medspace = 2^{22}\cdot 3^{6}\cdot 23^{2}\cdot 37^{4}\)
|
| |
| Root discriminant: | \(34.68\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}23^{1/2}37^{1/2}\approx 180.05854349460486$ | ||
| Ramified primes: |
\(2\), \(3\), \(23\), \(37\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{772}a^{10}-\frac{67}{772}a^{8}-\frac{55}{386}a^{6}-\frac{39}{386}a^{4}-\frac{21}{386}a^{2}-\frac{30}{193}$, $\frac{1}{772}a^{11}-\frac{67}{772}a^{9}-\frac{55}{386}a^{7}-\frac{39}{386}a^{5}-\frac{21}{386}a^{3}-\frac{30}{193}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{53}{193}a^{10}+\frac{2277}{386}a^{8}-\frac{7680}{193}a^{6}+\frac{17065}{193}a^{4}-\frac{7810}{193}a^{2}+\frac{377}{193}$, $\frac{51}{193}a^{10}+\frac{1101}{193}a^{8}-\frac{7514}{193}a^{6}+\frac{17295}{193}a^{4}-\frac{9438}{193}a^{2}+\frac{909}{193}$, $\frac{1}{193}a^{10}-\frac{75}{772}a^{8}+\frac{83}{193}a^{6}+\frac{115}{193}a^{4}-\frac{1821}{386}a^{2}+\frac{652}{193}$, $\frac{1}{193}a^{10}-\frac{75}{772}a^{8}+\frac{83}{193}a^{6}+\frac{115}{193}a^{4}-\frac{1821}{386}a^{2}+\frac{459}{193}$, $\frac{52}{193}a^{10}-\frac{4479}{772}a^{8}+\frac{7597}{193}a^{6}-\frac{17180}{193}a^{4}+\frac{17441}{386}a^{2}-\frac{1222}{193}$, $\frac{75}{386}a^{11}+\frac{3295}{772}a^{9}-\frac{11629}{386}a^{7}+\frac{14505}{193}a^{5}-\frac{20589}{386}a^{3}+\frac{1991}{193}a+1$, $\frac{629}{772}a^{11}+\frac{13579}{772}a^{9}-\frac{23136}{193}a^{7}+\frac{105591}{386}a^{5}-\frac{53955}{386}a^{3}+\frac{2079}{193}a+1$, $\frac{295}{772}a^{11}+\frac{79}{386}a^{10}-\frac{1612}{193}a^{9}-\frac{3445}{772}a^{8}+\frac{11284}{193}a^{7}+\frac{11961}{386}a^{6}-\frac{55509}{386}a^{5}-\frac{14275}{193}a^{4}+\frac{19580}{193}a^{3}+\frac{17333}{386}a^{2}-\frac{4218}{193}a-\frac{1459}{193}$, $\frac{75}{386}a^{11}-\frac{213}{772}a^{10}+\frac{3295}{772}a^{9}+\frac{4621}{772}a^{8}-\frac{11629}{386}a^{7}-\frac{7942}{193}a^{6}+\frac{14505}{193}a^{5}+\frac{36871}{386}a^{4}-\frac{20589}{386}a^{3}-\frac{19459}{386}a^{2}+\frac{1991}{193}a+\frac{793}{193}$, $\frac{629}{772}a^{11}+\frac{425}{772}a^{10}-\frac{13579}{772}a^{9}-\frac{9175}{772}a^{8}+\frac{23136}{193}a^{7}+\frac{15622}{193}a^{6}-\frac{105591}{386}a^{5}-\frac{71001}{386}a^{4}+\frac{53955}{386}a^{3}+\frac{35079}{386}a^{2}-\frac{2079}{193}a-\frac{1170}{193}$, $\frac{52}{193}a^{11}-\frac{59}{772}a^{10}+\frac{4479}{772}a^{9}+\frac{1251}{772}a^{8}-\frac{7597}{193}a^{7}-\frac{4089}{386}a^{6}+\frac{17180}{193}a^{5}+\frac{8091}{386}a^{4}-\frac{17441}{386}a^{3}-\frac{691}{386}a^{2}+\frac{1222}{193}a-\frac{353}{193}$
|
| |
| Regulator: | \( 258565.4771921371 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 258565.4771921371 \cdot 1}{2\cdot\sqrt{3031447150320943104}}\cr\approx \mathstrut & 0.304141364857380 \end{aligned}\] (assuming GRH)
Galois group
$C_2^2\times S_4$ (as 12T48):
| A solvable group of order 96 |
| The 20 conjugacy class representatives for $C_2^2\times S_4$ |
| Character table for $C_2^2\times S_4$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), 3.3.148.1, 6.6.13602384.1, 6.6.75700224.1, 6.6.64485376.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.22a1.1 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ |
|
\(3\)
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(23\)
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 23.4.1.0a1.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 23.4.1.0a1.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(37\)
| 37.2.1.0a1.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 37.2.1.0a1.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 37.2.2.2a1.2 | $x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 37.2.2.2a1.2 | $x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |