Properties

Label 12.12.303...104.2
Degree $12$
Signature $[12, 0]$
Discriminant $3.031\times 10^{18}$
Root discriminant \(34.68\)
Ramified primes $2,3,23,37$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^2\times S_4$ (as 12T48)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 - 22*x^10 + 156*x^8 - 396*x^6 + 308*x^4 - 80*x^2 + 4)
 
Copy content gp:K = bnfinit(y^12 - 22*y^10 + 156*y^8 - 396*y^6 + 308*y^4 - 80*y^2 + 4, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 22*x^10 + 156*x^8 - 396*x^6 + 308*x^4 - 80*x^2 + 4);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 22*x^10 + 156*x^8 - 396*x^6 + 308*x^4 - 80*x^2 + 4)
 

\( x^{12} - 22x^{10} + 156x^{8} - 396x^{6} + 308x^{4} - 80x^{2} + 4 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $12$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[12, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(3031447150320943104\) \(\medspace = 2^{22}\cdot 3^{6}\cdot 23^{2}\cdot 37^{4}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.68\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}3^{1/2}23^{1/2}37^{1/2}\approx 180.05854349460486$
Ramified primes:   \(2\), \(3\), \(23\), \(37\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2^2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{772}a^{10}-\frac{67}{772}a^{8}-\frac{55}{386}a^{6}-\frac{39}{386}a^{4}-\frac{21}{386}a^{2}-\frac{30}{193}$, $\frac{1}{772}a^{11}-\frac{67}{772}a^{9}-\frac{55}{386}a^{7}-\frac{39}{386}a^{5}-\frac{21}{386}a^{3}-\frac{30}{193}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{53}{193}a^{10}+\frac{2277}{386}a^{8}-\frac{7680}{193}a^{6}+\frac{17065}{193}a^{4}-\frac{7810}{193}a^{2}+\frac{377}{193}$, $\frac{51}{193}a^{10}+\frac{1101}{193}a^{8}-\frac{7514}{193}a^{6}+\frac{17295}{193}a^{4}-\frac{9438}{193}a^{2}+\frac{909}{193}$, $\frac{1}{193}a^{10}-\frac{75}{772}a^{8}+\frac{83}{193}a^{6}+\frac{115}{193}a^{4}-\frac{1821}{386}a^{2}+\frac{652}{193}$, $\frac{1}{193}a^{10}-\frac{75}{772}a^{8}+\frac{83}{193}a^{6}+\frac{115}{193}a^{4}-\frac{1821}{386}a^{2}+\frac{459}{193}$, $\frac{52}{193}a^{10}-\frac{4479}{772}a^{8}+\frac{7597}{193}a^{6}-\frac{17180}{193}a^{4}+\frac{17441}{386}a^{2}-\frac{1222}{193}$, $\frac{75}{386}a^{11}+\frac{3295}{772}a^{9}-\frac{11629}{386}a^{7}+\frac{14505}{193}a^{5}-\frac{20589}{386}a^{3}+\frac{1991}{193}a+1$, $\frac{629}{772}a^{11}+\frac{13579}{772}a^{9}-\frac{23136}{193}a^{7}+\frac{105591}{386}a^{5}-\frac{53955}{386}a^{3}+\frac{2079}{193}a+1$, $\frac{295}{772}a^{11}+\frac{79}{386}a^{10}-\frac{1612}{193}a^{9}-\frac{3445}{772}a^{8}+\frac{11284}{193}a^{7}+\frac{11961}{386}a^{6}-\frac{55509}{386}a^{5}-\frac{14275}{193}a^{4}+\frac{19580}{193}a^{3}+\frac{17333}{386}a^{2}-\frac{4218}{193}a-\frac{1459}{193}$, $\frac{75}{386}a^{11}-\frac{213}{772}a^{10}+\frac{3295}{772}a^{9}+\frac{4621}{772}a^{8}-\frac{11629}{386}a^{7}-\frac{7942}{193}a^{6}+\frac{14505}{193}a^{5}+\frac{36871}{386}a^{4}-\frac{20589}{386}a^{3}-\frac{19459}{386}a^{2}+\frac{1991}{193}a+\frac{793}{193}$, $\frac{629}{772}a^{11}+\frac{425}{772}a^{10}-\frac{13579}{772}a^{9}-\frac{9175}{772}a^{8}+\frac{23136}{193}a^{7}+\frac{15622}{193}a^{6}-\frac{105591}{386}a^{5}-\frac{71001}{386}a^{4}+\frac{53955}{386}a^{3}+\frac{35079}{386}a^{2}-\frac{2079}{193}a-\frac{1170}{193}$, $\frac{52}{193}a^{11}-\frac{59}{772}a^{10}+\frac{4479}{772}a^{9}+\frac{1251}{772}a^{8}-\frac{7597}{193}a^{7}-\frac{4089}{386}a^{6}+\frac{17180}{193}a^{5}+\frac{8091}{386}a^{4}-\frac{17441}{386}a^{3}-\frac{691}{386}a^{2}+\frac{1222}{193}a-\frac{353}{193}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 258565.4771921371 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 258565.4771921371 \cdot 1}{2\cdot\sqrt{3031447150320943104}}\cr\approx \mathstrut & 0.304141364857380 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 - 22*x^10 + 156*x^8 - 396*x^6 + 308*x^4 - 80*x^2 + 4) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 22*x^10 + 156*x^8 - 396*x^6 + 308*x^4 - 80*x^2 + 4, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 22*x^10 + 156*x^8 - 396*x^6 + 308*x^4 - 80*x^2 + 4); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 22*x^10 + 156*x^8 - 396*x^6 + 308*x^4 - 80*x^2 + 4); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times S_4$ (as 12T48):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 96
The 20 conjugacy class representatives for $C_2^2\times S_4$
Character table for $C_2^2\times S_4$

Intermediate fields

\(\Q(\sqrt{6}) \), 3.3.148.1, 6.6.13602384.1, 6.6.75700224.1, 6.6.64485376.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }^{2}$ ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{6}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ R ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ R ${\href{/padicField/41.6.0.1}{6} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.3.0.1}{3} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.6.22a1.1$x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$$6$$2$$22$$D_6$$$[3]_{3}^{2}$$
\(3\) Copy content Toggle raw display 3.3.2.3a1.2$x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
3.3.2.3a1.2$x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
\(23\) Copy content Toggle raw display 23.1.2.1a1.1$x^{2} + 23$$2$$1$$1$$C_2$$$[\ ]_{2}$$
23.1.2.1a1.1$x^{2} + 23$$2$$1$$1$$C_2$$$[\ ]_{2}$$
23.4.1.0a1.1$x^{4} + 3 x^{2} + 19 x + 5$$1$$4$$0$$C_4$$$[\ ]^{4}$$
23.4.1.0a1.1$x^{4} + 3 x^{2} + 19 x + 5$$1$$4$$0$$C_4$$$[\ ]^{4}$$
\(37\) Copy content Toggle raw display 37.2.1.0a1.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
37.2.1.0a1.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
37.2.2.2a1.2$x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
37.2.2.2a1.2$x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)