Properties

Label 12.0.1721085137518592.3
Degree $12$
Signature $[0, 6]$
Discriminant $1.721\times 10^{15}$
Root discriminant \(18.61\)
Ramified primes $2,17$
Class number $1$
Class group trivial
Galois group $\SOPlus(4,2)$ (as 12T35)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 29*x^10 - 90*x^9 + 242*x^8 - 494*x^7 + 893*x^6 - 1262*x^5 + 1594*x^4 - 1514*x^3 + 1309*x^2 - 702*x + 387)
 
Copy content gp:K = bnfinit(y^12 - 6*y^11 + 29*y^10 - 90*y^9 + 242*y^8 - 494*y^7 + 893*y^6 - 1262*y^5 + 1594*y^4 - 1514*y^3 + 1309*y^2 - 702*y + 387, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 6*x^11 + 29*x^10 - 90*x^9 + 242*x^8 - 494*x^7 + 893*x^6 - 1262*x^5 + 1594*x^4 - 1514*x^3 + 1309*x^2 - 702*x + 387);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 6*x^11 + 29*x^10 - 90*x^9 + 242*x^8 - 494*x^7 + 893*x^6 - 1262*x^5 + 1594*x^4 - 1514*x^3 + 1309*x^2 - 702*x + 387)
 

\( x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 242 x^{8} - 494 x^{7} + 893 x^{6} - 1262 x^{5} + 1594 x^{4} + \cdots + 387 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $12$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(1721085137518592\) \(\medspace = 2^{22}\cdot 17^{7}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(18.61\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}17^{5/6}\approx 37.780041142444276$
Ramified primes:   \(2\), \(17\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{17}) \)
$\Aut(K/\Q)$:   $S_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-2}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{159}a^{10}-\frac{5}{159}a^{9}-\frac{2}{53}a^{8}+\frac{18}{53}a^{7}-\frac{1}{159}a^{6}-\frac{16}{53}a^{5}-\frac{79}{159}a^{4}-\frac{20}{53}a^{3}-\frac{71}{159}a^{2}+\frac{56}{159}a-\frac{1}{53}$, $\frac{1}{12879}a^{11}+\frac{35}{12879}a^{10}+\frac{2}{4293}a^{9}-\frac{380}{4293}a^{8}+\frac{887}{12879}a^{7}-\frac{4222}{12879}a^{6}-\frac{1108}{4293}a^{5}+\frac{5419}{12879}a^{4}-\frac{1495}{4293}a^{3}-\frac{3473}{12879}a^{2}-\frac{358}{1431}a+\frac{22}{1431}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $5$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{466}{12879}a^{11}-\frac{2077}{12879}a^{10}+\frac{2957}{4293}a^{9}-\frac{7223}{4293}a^{8}+\frac{51515}{12879}a^{7}-\frac{81610}{12879}a^{6}+\frac{42599}{4293}a^{5}-\frac{126281}{12879}a^{4}+\frac{45992}{4293}a^{3}-\frac{59654}{12879}a^{2}+\frac{5918}{1431}a+\frac{2071}{1431}$, $\frac{97}{12879}a^{11}-\frac{574}{12879}a^{10}+\frac{1085}{4293}a^{9}-\frac{3164}{4293}a^{8}+\frac{26261}{12879}a^{7}-\frac{44953}{12879}a^{6}+\frac{26147}{4293}a^{5}-\frac{79508}{12879}a^{4}+\frac{31673}{4293}a^{3}-\frac{37910}{12879}a^{2}+\frac{4019}{1431}a+\frac{2026}{1431}$, $\frac{97}{12879}a^{11}-\frac{493}{12879}a^{10}+\frac{950}{4293}a^{9}-\frac{3326}{4293}a^{8}+\frac{30635}{12879}a^{7}-\frac{70792}{12879}a^{6}+\frac{46316}{4293}a^{5}-\frac{214697}{12879}a^{4}+\frac{90155}{4293}a^{3}-\frac{262604}{12879}a^{2}+\frac{20264}{1431}a-\frac{9449}{1431}$, $\frac{326}{12879}a^{11}-\frac{902}{12879}a^{10}+\frac{1138}{4293}a^{9}-\frac{517}{4293}a^{8}-\frac{2195}{12879}a^{7}+\frac{39751}{12879}a^{6}-\frac{28271}{4293}a^{5}+\frac{193493}{12879}a^{4}-\frac{76565}{4293}a^{3}+\frac{291458}{12879}a^{2}-\frac{19211}{1431}a+\frac{17000}{1431}$, $\frac{326}{12879}a^{11}-\frac{2684}{12879}a^{10}+\frac{4108}{4293}a^{9}-\frac{14125}{4293}a^{8}+\frac{107641}{12879}a^{7}-\frac{228926}{12879}a^{6}+\frac{124738}{4293}a^{5}-\frac{9974}{243}a^{4}+\frac{186604}{4293}a^{3}-\frac{522187}{12879}a^{2}+\frac{34096}{1431}a-\frac{21043}{1431}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 554.099176051 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 554.099176051 \cdot 1}{2\cdot\sqrt{1721085137518592}}\cr\approx \mathstrut & 0.410899432753 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 29*x^10 - 90*x^9 + 242*x^8 - 494*x^7 + 893*x^6 - 1262*x^5 + 1594*x^4 - 1514*x^3 + 1309*x^2 - 702*x + 387) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 6*x^11 + 29*x^10 - 90*x^9 + 242*x^8 - 494*x^7 + 893*x^6 - 1262*x^5 + 1594*x^4 - 1514*x^3 + 1309*x^2 - 702*x + 387, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 6*x^11 + 29*x^10 - 90*x^9 + 242*x^8 - 494*x^7 + 893*x^6 - 1262*x^5 + 1594*x^4 - 1514*x^3 + 1309*x^2 - 702*x + 387); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 6*x^11 + 29*x^10 - 90*x^9 + 242*x^8 - 494*x^7 + 893*x^6 - 1262*x^5 + 1594*x^4 - 1514*x^3 + 1309*x^2 - 702*x + 387); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\SOPlus(4,2)$ (as 12T35):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 72
The 9 conjugacy class representatives for $\SOPlus(4,2)$
Character table for $\SOPlus(4,2)$

Intermediate fields

\(\Q(\sqrt{-2}) \), 4.0.1088.1, 6.0.10061824.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 6 siblings: 6.0.10061824.1, some data not computed
Degree 9 sibling: data not computed
Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 6.0.10061824.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{3}$ ${\href{/padicField/5.4.0.1}{4} }^{3}$ ${\href{/padicField/7.4.0.1}{4} }^{3}$ ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ R ${\href{/padicField/19.2.0.1}{2} }^{6}$ ${\href{/padicField/23.4.0.1}{4} }^{3}$ ${\href{/padicField/29.4.0.1}{4} }^{3}$ ${\href{/padicField/31.4.0.1}{4} }^{3}$ ${\href{/padicField/37.4.0.1}{4} }^{3}$ ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ ${\href{/padicField/47.2.0.1}{2} }^{6}$ ${\href{/padicField/53.2.0.1}{2} }^{6}$ ${\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.6.22a1.1$x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$$6$$2$$22$$D_6$$$[3]_{3}^{2}$$
\(17\) Copy content Toggle raw display 17.1.2.1a1.2$x^{2} + 51$$2$$1$$1$$C_2$$$[\ ]_{2}$$
17.1.2.1a1.2$x^{2} + 51$$2$$1$$1$$C_2$$$[\ ]_{2}$$
17.1.2.1a1.2$x^{2} + 51$$2$$1$$1$$C_2$$$[\ ]_{2}$$
17.2.3.4a1.2$x^{6} + 48 x^{5} + 777 x^{4} + 4384 x^{3} + 2331 x^{2} + 432 x + 44$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)