Properties

Label 12T35
Order \(72\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $S_3\wr C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $35$
Group :  $S_3\wr C_2$
CHM label :  $[D_{6}^{2}]2=D_{6}wr2$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (2,6,10)(4,8,12), (2,8)(4,6)(10,12), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11)
$|\Aut(F/K)|$:  $6$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $D_{4}$

Degree 6: $C_3^2:D_4$

Low degree siblings

6T13 x 2, 9T16, 12T34 x 2, 12T35, 12T36 x 2, 18T34 x 2, 18T36, 24T72 x 2, 36T53, 36T54 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 2, 4)( 6,12)( 8,10)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $4$ $3$ $( 2, 6,10)( 4, 8,12)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$
$ 4, 4, 4 $ $18$ $4$ $( 1, 2, 3,12)( 4, 5,10,11)( 6, 7, 8, 9)$
$ 6, 6 $ $12$ $6$ $( 1, 2, 5,10, 9, 6)( 3,12, 7, 8,11, 4)$
$ 2, 2, 2, 2, 2, 2 $ $9$ $2$ $( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)$
$ 3, 3, 2, 2, 2 $ $12$ $6$ $( 1, 3)( 2, 6,10)( 4, 8,12)( 5,11)( 7, 9)$
$ 3, 3, 3, 3 $ $4$ $3$ $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$

Group invariants

Order:  $72=2^{3} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [72, 40]
Character table:   
     2  3  2  1  2  2  1  3  1  1
     3  2  1  2  1  .  1  .  1  2

       1a 2a 3a 2b 4a 6a 2c 6b 3b
    2P 1a 1a 3a 1a 2c 3b 1a 3a 3b
    3P 1a 2a 1a 2b 4a 2b 2c 2a 1a
    5P 1a 2a 3a 2b 4a 6a 2c 6b 3b

X.1     1  1  1  1  1  1  1  1  1
X.2     1 -1  1 -1  1 -1  1 -1  1
X.3     1 -1  1  1 -1  1  1 -1  1
X.4     1  1  1 -1 -1 -1  1  1  1
X.5     2  .  2  .  .  . -2  .  2
X.6     4 -2  1  .  .  .  .  1 -2
X.7     4  . -2 -2  .  1  .  .  1
X.8     4  . -2  2  . -1  .  .  1
X.9     4  2  1  .  .  .  . -1 -2