Normalized defining polynomial
\( x^{12} + 2x^{10} + 4x^{8} + 4x^{6} + 4x^{4} + 4 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(44767018745856\)
\(\medspace = 2^{22}\cdot 3^{6}\cdot 11^{4}\)
|
| |
| Root discriminant: | \(13.73\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}11^{1/2}\approx 20.471293992310418$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}, \sqrt{-3})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{10}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{11}-\frac{1}{2}a^{5}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - a^{4} - \frac{1}{2} a^{2} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{1}{4}a^{10}+\frac{1}{2}a^{8}+a^{6}+\frac{1}{2}a^{4}-1$, $\frac{1}{2}a^{6}+a^{4}+a^{2}$, $\frac{1}{4}a^{8}+\frac{1}{2}a^{6}+a^{4}+\frac{1}{2}a^{2}-a$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{2}+a$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{10}+\frac{1}{4}a^{9}-\frac{1}{4}a^{8}+\frac{1}{2}a^{7}-\frac{1}{2}a^{5}+\frac{1}{2}a^{4}-\frac{1}{2}a^{3}+\frac{3}{2}a^{2}-2a+1$
|
| |
| Regulator: | \( 190.610034603 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 190.610034603 \cdot 1}{6\cdot\sqrt{44767018745856}}\cr\approx \mathstrut & 0.292142427199 \end{aligned}\]
Galois group
$C_2\times D_6$ (as 12T10):
| A solvable group of order 24 |
| The 12 conjugacy class representatives for $S_3 \times C_2^2$ |
| Character table for $S_3 \times C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-3}) \), 3.1.44.1, \(\Q(\sqrt{-2}, \sqrt{-3})\), 6.2.6690816.1, 6.0.247808.1, 6.0.52272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 12 siblings: | 12.0.5416809268248576.1, 12.0.5416809268248576.4, 12.4.5416809268248576.2 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.22a1.1 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ |
|
\(3\)
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(11\)
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |