Normalized defining polynomial
\( x^{12} - 38x^{6} + 64 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(5416809268248576\)
\(\medspace = 2^{22}\cdot 3^{6}\cdot 11^{6}\)
|
| |
| Root discriminant: | \(20.47\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}11^{1/2}\approx 20.471293992310418$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{6}a^{6}+\frac{1}{3}$, $\frac{1}{6}a^{7}+\frac{1}{3}a$, $\frac{1}{36}a^{8}+\frac{1}{18}a^{6}-\frac{5}{18}a^{2}+\frac{4}{9}$, $\frac{1}{72}a^{9}-\frac{1}{18}a^{7}+\frac{13}{36}a^{3}-\frac{4}{9}a$, $\frac{1}{144}a^{10}+\frac{1}{18}a^{6}-\frac{11}{72}a^{4}-\frac{1}{3}a^{2}+\frac{1}{9}$, $\frac{1}{288}a^{11}-\frac{1}{18}a^{7}+\frac{13}{144}a^{5}-\frac{4}{9}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{144}a^{10}-\frac{1}{36}a^{8}-\frac{11}{72}a^{4}+\frac{17}{18}a^{2}-\frac{1}{3}$, $\frac{5}{288}a^{11}+\frac{1}{48}a^{10}+\frac{1}{72}a^{9}-\frac{79}{144}a^{5}-\frac{19}{24}a^{4}-\frac{23}{36}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{5}{288}a^{11}-\frac{1}{48}a^{10}+\frac{1}{72}a^{9}-\frac{79}{144}a^{5}+\frac{19}{24}a^{4}-\frac{23}{36}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{48}a^{10}+\frac{1}{72}a^{9}-\frac{1}{18}a^{7}-\frac{19}{24}a^{4}-\frac{23}{36}a^{3}-\frac{1}{3}a^{2}+\frac{14}{9}a-\frac{1}{3}$, $\frac{1}{96}a^{11}+\frac{1}{144}a^{10}+\frac{1}{72}a^{9}-\frac{1}{36}a^{8}-\frac{1}{18}a^{7}-\frac{19}{48}a^{5}-\frac{35}{72}a^{4}-\frac{11}{36}a^{3}+\frac{11}{18}a^{2}+\frac{8}{9}a+\frac{1}{3}$, $\frac{1}{96}a^{11}-\frac{1}{144}a^{10}-\frac{1}{72}a^{9}-\frac{1}{36}a^{8}+\frac{1}{18}a^{7}-\frac{1}{9}a^{6}-\frac{19}{48}a^{5}+\frac{35}{72}a^{4}-\frac{1}{36}a^{3}+\frac{17}{18}a^{2}-\frac{2}{9}a+\frac{7}{9}$, $\frac{1}{72}a^{11}-\frac{1}{48}a^{10}+\frac{1}{72}a^{9}+\frac{1}{18}a^{7}-\frac{23}{36}a^{5}+\frac{11}{24}a^{4}-\frac{23}{36}a^{3}+a^{2}-\frac{5}{9}a+1$
|
| |
| Regulator: | \( 4360.86280645 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 4360.86280645 \cdot 1}{2\cdot\sqrt{5416809268248576}}\cr\approx \mathstrut & 0.738771464821 \end{aligned}\]
Galois group
$C_2\times D_6$ (as 12T10):
| A solvable group of order 24 |
| The 12 conjugacy class representatives for $S_3 \times C_2^2$ |
| Character table for $S_3 \times C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{33}) \), 3.1.44.1, \(\Q(\sqrt{6}, \sqrt{22})\), 6.2.6690816.1, 6.2.2725888.3, 6.2.574992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 12 siblings: | 12.0.5416809268248576.1, 12.0.44767018745856.2, 12.0.5416809268248576.4 |
| Minimal sibling: | 12.0.44767018745856.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.11a1.2 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ |
| 2.1.6.11a1.2 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(11\)
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |