Properties

Label 12.0.101...000.1
Degree $12$
Signature $[0, 6]$
Discriminant $1.016\times 10^{18}$
Root discriminant \(31.66\)
Ramified primes $2,3,5$
Class number $3$
Class group [3]
Galois group $S_3 \times C_2^2$ (as 12T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 - 12*x^10 + 108*x^8 - 428*x^6 + 1272*x^4 - 72*x^2 + 4)
 
Copy content gp:K = bnfinit(y^12 - 12*y^10 + 108*y^8 - 428*y^6 + 1272*y^4 - 72*y^2 + 4, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 12*x^10 + 108*x^8 - 428*x^6 + 1272*x^4 - 72*x^2 + 4);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 12*x^10 + 108*x^8 - 428*x^6 + 1272*x^4 - 72*x^2 + 4)
 

\( x^{12} - 12x^{10} + 108x^{8} - 428x^{6} + 1272x^{4} - 72x^{2} + 4 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $12$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(1015599566684160000\) \(\medspace = 2^{22}\cdot 3^{18}\cdot 5^{4}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(31.66\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}3^{3/2}5^{1/2}\approx 41.40523078218084$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2^2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \), 6.0.7873200.1$^{3}$, 6.0.335923200.1$^{3}$, 12.0.1015599566684160000.1$^{12}$, 12.0.25389989167104000000.1$^{6}$, deg 12$^{6}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{12}a^{6}+\frac{1}{6}$, $\frac{1}{12}a^{7}+\frac{1}{6}a$, $\frac{1}{12}a^{8}+\frac{1}{6}a^{2}$, $\frac{1}{12}a^{9}+\frac{1}{6}a^{3}$, $\frac{1}{5688}a^{10}+\frac{35}{2844}a^{8}+\frac{20}{711}a^{6}+\frac{421}{2844}a^{4}+\frac{515}{1422}a^{2}-\frac{224}{711}$, $\frac{1}{5688}a^{11}+\frac{35}{2844}a^{9}+\frac{20}{711}a^{7}+\frac{421}{2844}a^{5}+\frac{515}{1422}a^{3}-\frac{224}{711}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{3}$, which has order $3$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{3}$, which has order $3$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 
Relative class number:   $3$

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $5$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -\frac{9}{632} a^{10} + \frac{161}{948} a^{8} - \frac{483}{316} a^{6} + \frac{1899}{316} a^{4} - \frac{8533}{474} a^{2} + \frac{161}{158} \)  (order $6$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{27}{316}a^{11}-\frac{9}{316}a^{10}-\frac{161}{158}a^{9}+\frac{161}{474}a^{8}+\frac{1449}{158}a^{7}-\frac{483}{158}a^{6}-\frac{5697}{158}a^{5}+\frac{1899}{158}a^{4}+\frac{8454}{79}a^{3}-\frac{8533}{237}a^{2}-\frac{9}{79}a+\frac{82}{79}$, $\frac{63}{632}a^{11}+\frac{17}{2844}a^{10}-\frac{1127}{948}a^{9}-\frac{58}{711}a^{8}+\frac{3381}{316}a^{7}+\frac{2009}{2844}a^{6}-\frac{13293}{316}a^{5}-\frac{4219}{1422}a^{4}+\frac{59257}{474}a^{3}+\frac{5200}{711}a^{2}-\frac{21}{158}a-\frac{301}{1422}$, $\frac{63}{632}a^{11}-\frac{17}{2844}a^{10}-\frac{1127}{948}a^{9}+\frac{58}{711}a^{8}+\frac{3381}{316}a^{7}-\frac{2009}{2844}a^{6}-\frac{13293}{316}a^{5}+\frac{4219}{1422}a^{4}+\frac{59257}{474}a^{3}-\frac{5200}{711}a^{2}-\frac{21}{158}a+\frac{301}{1422}$, $\frac{903}{632}a^{11}+\frac{1145}{2844}a^{10}-\frac{4045}{237}a^{9}-\frac{6851}{1422}a^{8}+\frac{48461}{316}a^{7}+\frac{123239}{2844}a^{6}-\frac{190533}{316}a^{5}-\frac{243175}{1422}a^{4}+\frac{422608}{237}a^{3}+\frac{360733}{711}a^{2}-\frac{301}{158}a-\frac{20803}{1422}$, $\frac{53}{948}a^{11}+\frac{59}{5688}a^{10}-\frac{635}{948}a^{9}-\frac{305}{2844}a^{8}+\frac{1905}{316}a^{7}+\frac{2587}{2844}a^{6}-\frac{11341}{474}a^{5}-\frac{9289}{2844}a^{4}+\frac{33655}{474}a^{3}+\frac{13795}{1422}a^{2}-\frac{635}{158}a-\frac{1547}{1422}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 19168.46386576396 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 19168.46386576396 \cdot 3}{6\cdot\sqrt{1015599566684160000}}\cr\approx \mathstrut & 0.585160862736377 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 - 12*x^10 + 108*x^8 - 428*x^6 + 1272*x^4 - 72*x^2 + 4) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 12*x^10 + 108*x^8 - 428*x^6 + 1272*x^4 - 72*x^2 + 4, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 12*x^10 + 108*x^8 - 428*x^6 + 1272*x^4 - 72*x^2 + 4); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 12*x^10 + 108*x^8 - 428*x^6 + 1272*x^4 - 72*x^2 + 4); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times D_6$ (as 12T10):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 12 conjugacy class representatives for $S_3 \times C_2^2$
Character table for $S_3 \times C_2^2$

Intermediate fields

\(\Q(\sqrt{6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \), 3.3.1620.1, \(\Q(\sqrt{-2}, \sqrt{-3})\), 6.0.7873200.1, 6.6.1007769600.2, 6.0.335923200.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 24
Degree 12 siblings: deg 12, 12.0.25389989167104000000.1, deg 12
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.2.0.1}{2} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{6}$ ${\href{/padicField/17.2.0.1}{2} }^{6}$ ${\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.2.0.1}{2} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{6}$ ${\href{/padicField/53.2.0.1}{2} }^{6}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.6.22a1.1$x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$$6$$2$$22$$D_6$$$[3]_{3}^{2}$$
\(3\) Copy content Toggle raw display 3.1.6.9a2.1$x^{6} + 3 x^{4} + 3$$6$$1$$9$$D_{6}$$$[2]_{2}^{2}$$
3.1.6.9a2.1$x^{6} + 3 x^{4} + 3$$6$$1$$9$$D_{6}$$$[2]_{2}^{2}$$
\(5\) Copy content Toggle raw display 5.2.1.0a1.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
5.2.1.0a1.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
5.2.2.2a1.2$x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
5.2.2.2a1.2$x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)