Properties

Label 5.2.1.0a1.1
Base \(\Q_{5}\)
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)
Galois group $C_2$ (as 2T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{2} + 4 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $2$
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{5})$ $=$$\Gal(K/\Q_{5})$: $C_2$
This field is Galois and abelian over $\Q_{5}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$24 = (5^{ 2 } - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 5 }$.

Canonical tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $2$
Galois group: $C_2$ (as 2T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{2} - x + 2$