Properties

Label 12.0.2494869834563584.3
Degree $12$
Signature $[0, 6]$
Discriminant $2.495\times 10^{15}$
Root discriminant \(19.19\)
Ramified primes $2,29$
Class number $1$
Class group trivial
Galois group $C_2\times S_5$ (as 12T123)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 5*x^10 - 6*x^9 + 20*x^8 - 2*x^7 + 29*x^6 + 2*x^5 + 20*x^4 + 6*x^3 + 5*x^2 + 2*x + 1)
 
Copy content gp:K = bnfinit(y^12 - 2*y^11 + 5*y^10 - 6*y^9 + 20*y^8 - 2*y^7 + 29*y^6 + 2*y^5 + 20*y^4 + 6*y^3 + 5*y^2 + 2*y + 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^11 + 5*x^10 - 6*x^9 + 20*x^8 - 2*x^7 + 29*x^6 + 2*x^5 + 20*x^4 + 6*x^3 + 5*x^2 + 2*x + 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 2*x^11 + 5*x^10 - 6*x^9 + 20*x^8 - 2*x^7 + 29*x^6 + 2*x^5 + 20*x^4 + 6*x^3 + 5*x^2 + 2*x + 1)
 

\( x^{12} - 2x^{11} + 5x^{10} - 6x^{9} + 20x^{8} - 2x^{7} + 29x^{6} + 2x^{5} + 20x^{4} + 6x^{3} + 5x^{2} + 2x + 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $12$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(2494869834563584\) \(\medspace = 2^{22}\cdot 29^{6}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(19.19\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}29^{3/4}\approx 44.533499491161095$
Ramified primes:   \(2\), \(29\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-2}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{15}a^{11}-\frac{1}{15}a^{8}-\frac{2}{15}a^{7}-\frac{1}{15}a^{6}+\frac{2}{15}a^{5}-\frac{4}{15}a^{4}-\frac{1}{5}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{2}{15}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $5$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $a^{11}-2a^{10}+5a^{9}-6a^{8}+20a^{7}-2a^{6}+29a^{5}+2a^{4}+20a^{3}+6a^{2}+5a+2$, $\frac{2}{15}a^{11}-a^{10}+\frac{5}{3}a^{9}-\frac{52}{15}a^{8}+\frac{76}{15}a^{7}-\frac{187}{15}a^{6}-\frac{41}{15}a^{5}-\frac{101}{5}a^{4}-\frac{76}{15}a^{3}-\frac{25}{3}a^{2}-\frac{5}{3}a-\frac{11}{15}$, $\frac{4}{5}a^{11}-a^{10}+3a^{9}-\frac{14}{5}a^{8}+\frac{211}{15}a^{7}+\frac{113}{15}a^{6}+\frac{404}{15}a^{5}+\frac{152}{15}a^{4}+\frac{214}{15}a^{3}+\frac{10}{3}a^{2}+\frac{10}{3}a+\frac{3}{5}$, $\frac{6}{5}a^{11}-\frac{8}{3}a^{10}+\frac{20}{3}a^{9}-\frac{128}{15}a^{8}+\frac{379}{15}a^{7}-\frac{98}{15}a^{6}+\frac{536}{15}a^{5}-\frac{22}{15}a^{4}+\frac{346}{15}a^{3}+\frac{16}{3}a^{2}+\frac{8}{3}a+\frac{46}{15}$, $\frac{16}{15}a^{11}-2a^{10}+\frac{14}{3}a^{9}-\frac{86}{15}a^{8}+\frac{298}{15}a^{7}+\frac{3}{5}a^{6}+\frac{362}{15}a^{5}-\frac{18}{5}a^{4}+\frac{19}{5}a^{3}-\frac{4}{3}a-\frac{13}{15}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2189.03641237 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 2189.03641237 \cdot 1}{2\cdot\sqrt{2494869834563584}}\cr\approx \mathstrut & 1.34827429322 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 5*x^10 - 6*x^9 + 20*x^8 - 2*x^7 + 29*x^6 + 2*x^5 + 20*x^4 + 6*x^3 + 5*x^2 + 2*x + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 2*x^11 + 5*x^10 - 6*x^9 + 20*x^8 - 2*x^7 + 29*x^6 + 2*x^5 + 20*x^4 + 6*x^3 + 5*x^2 + 2*x + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^11 + 5*x^10 - 6*x^9 + 20*x^8 - 2*x^7 + 29*x^6 + 2*x^5 + 20*x^4 + 6*x^3 + 5*x^2 + 2*x + 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 + 5*x^10 - 6*x^9 + 20*x^8 - 2*x^7 + 29*x^6 + 2*x^5 + 20*x^4 + 6*x^3 + 5*x^2 + 2*x + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times S_5$ (as 12T123):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 240
The 14 conjugacy class representatives for $C_2\times S_5$
Character table for $C_2\times S_5$

Intermediate fields

\(\Q(\sqrt{-2}) \), 6.0.49948672.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 10 siblings: data not computed
Degree 12 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 30 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 10.6.17663873340416.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{4}$ ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.6.0.1}{6} }^{2}$ R ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{6}$ ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.6.22a1.1$x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$$6$$2$$22$$D_6$$$[3]_{3}^{2}$$
\(29\) Copy content Toggle raw display 29.2.1.0a1.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
29.2.1.0a1.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
29.2.4.6a1.4$x^{8} + 96 x^{7} + 3464 x^{6} + 55872 x^{5} + 345624 x^{4} + 111744 x^{3} + 13856 x^{2} + 913 x + 799$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)