Normalized defining polynomial
\( x^{12} + 60x^{6} + 36 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(131621703842267136\)
\(\medspace = 2^{22}\cdot 3^{22}\)
|
| |
| Root discriminant: | \(26.71\) |
| |
| Galois root discriminant: | $2^{11/6}3^{13/6}\approx 38.51687498161186$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $S_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}, \sqrt{-3})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{24}a^{6}-\frac{1}{2}a^{3}+\frac{1}{4}$, $\frac{1}{24}a^{7}-\frac{1}{2}a^{4}+\frac{1}{4}a$, $\frac{1}{24}a^{8}-\frac{1}{2}a^{5}+\frac{1}{4}a^{2}$, $\frac{1}{144}a^{9}-\frac{7}{24}a^{3}-\frac{1}{2}$, $\frac{1}{144}a^{10}-\frac{7}{24}a^{4}-\frac{1}{2}a$, $\frac{1}{144}a^{11}-\frac{7}{24}a^{5}-\frac{1}{2}a^{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( \frac{1}{48} a^{9} + \frac{9}{8} a^{3} + \frac{1}{2} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{1}{144}a^{9}+\frac{1}{24}a^{6}+\frac{5}{24}a^{3}-\frac{1}{4}$, $\frac{1}{48}a^{10}+\frac{1}{48}a^{9}-\frac{1}{24}a^{6}+\frac{9}{8}a^{4}+\frac{13}{8}a^{3}+\frac{3}{2}a-\frac{3}{4}$, $\frac{1}{48}a^{10}+\frac{1}{12}a^{6}+\frac{9}{8}a^{4}+\frac{3}{2}a+\frac{3}{2}$, $\frac{5}{48}a^{11}+\frac{1}{6}a^{10}-\frac{7}{24}a^{9}+\frac{3}{8}a^{8}-\frac{1}{3}a^{7}+\frac{5}{24}a^{6}+\frac{49}{8}a^{5}+10a^{4}-\frac{69}{4}a^{3}+\frac{87}{4}a^{2}-19a+\frac{45}{4}$, $\frac{17}{48}a^{11}+\frac{7}{16}a^{10}+\frac{17}{48}a^{9}+\frac{1}{4}a^{8}+\frac{1}{24}a^{7}-\frac{1}{12}a^{6}+\frac{169}{8}a^{5}+\frac{209}{8}a^{4}+\frac{169}{8}a^{3}+15a^{2}+\frac{11}{4}a-6$
|
| |
| Regulator: | \( 31629.4849309 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 31629.4849309 \cdot 1}{6\cdot\sqrt{131621703842267136}}\cr\approx \mathstrut & 0.894038714167 \end{aligned}\]
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\), 6.2.362797056.7 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 36 |
| Degree 6 sibling: | 6.2.362797056.7 |
| Degree 9 sibling: | 9.1.9521245937664.14 |
| Degree 18 siblings: | deg 18, deg 18, deg 18 |
| Minimal sibling: | 6.2.362797056.7 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{6}$ | ${\href{/padicField/7.2.0.1}{2} }^{6}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{6}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.22a1.1 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ |
|
\(3\)
| 3.1.6.11a1.14 | $x^{6} + 9 x^{3} + 18 x^{2} + 9 x + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $$[2, \frac{5}{2}]_{2}$$ |
| 3.1.6.11a1.14 | $x^{6} + 9 x^{3} + 18 x^{2} + 9 x + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $$[2, \frac{5}{2}]_{2}$$ |