Normalized defining polynomial
\( x^{12} - 6 x^{11} + 21 x^{10} - 26 x^{9} - 18 x^{8} + 90 x^{7} + 57 x^{6} - 522 x^{5} + 882 x^{4} + \cdots + 625 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(131621703842267136\)
\(\medspace = 2^{22}\cdot 3^{22}\)
|
| |
| Root discriminant: | \(26.71\) |
| |
| Galois root discriminant: | $2^{11/6}3^{13/6}\approx 38.51687498161186$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $S_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}, \sqrt{-3})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{18}a^{6}-\frac{1}{6}a^{5}+\frac{1}{3}a^{4}+\frac{5}{18}a^{3}+\frac{1}{3}a^{2}-\frac{1}{6}a+\frac{7}{18}$, $\frac{1}{18}a^{7}-\frac{1}{6}a^{5}+\frac{5}{18}a^{4}+\frac{1}{6}a^{3}-\frac{1}{6}a^{2}-\frac{1}{9}a+\frac{1}{6}$, $\frac{1}{18}a^{8}-\frac{2}{9}a^{5}+\frac{1}{6}a^{4}-\frac{1}{3}a^{3}-\frac{1}{9}a^{2}-\frac{1}{3}a+\frac{1}{6}$, $\frac{1}{90}a^{9}+\frac{1}{45}a^{8}-\frac{1}{90}a^{7}+\frac{4}{9}a^{5}-\frac{7}{18}a^{4}-\frac{11}{30}a^{3}-\frac{1}{90}a^{2}-\frac{37}{90}a-\frac{1}{18}$, $\frac{1}{180}a^{10}-\frac{1}{180}a^{9}+\frac{1}{60}a^{8}-\frac{1}{90}a^{7}-\frac{1}{36}a^{6}-\frac{1}{4}a^{5}-\frac{13}{180}a^{4}+\frac{17}{45}a^{3}-\frac{13}{60}a^{2}-\frac{79}{180}a-\frac{1}{12}$, $\frac{1}{12348900}a^{11}+\frac{1431}{1372100}a^{10}-\frac{9559}{12348900}a^{9}-\frac{148093}{6174450}a^{8}-\frac{66293}{12348900}a^{7}-\frac{65477}{2469780}a^{6}-\frac{2921443}{12348900}a^{5}-\frac{750838}{3087225}a^{4}-\frac{373103}{12348900}a^{3}+\frac{1915013}{12348900}a^{2}-\frac{3030161}{12348900}a-\frac{398}{123489}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ |
| |
| Narrow class group: | $C_{3}$, which has order $3$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( \frac{99308}{3087225} a^{11} - \frac{495518}{3087225} a^{10} + \frac{1580128}{3087225} a^{9} - \frac{320221}{1029075} a^{8} - \frac{944548}{1029075} a^{7} + \frac{408958}{205815} a^{6} + \frac{3999952}{1029075} a^{5} - \frac{13288022}{1029075} a^{4} + \frac{15575692}{1029075} a^{3} - \frac{4495546}{3087225} a^{2} + \frac{41301712}{3087225} a - \frac{2364986}{123489} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{357733}{6174450}a^{11}-\frac{592601}{2058150}a^{10}+\frac{315116}{343025}a^{9}-\frac{3385043}{6174450}a^{8}-\frac{5088362}{3087225}a^{7}+\frac{2215997}{617445}a^{6}+\frac{21660553}{3087225}a^{5}-\frac{71443318}{3087225}a^{4}+\frac{168128671}{6174450}a^{3}-\frac{8186978}{3087225}a^{2}+\frac{147964727}{6174450}a-\frac{8061337}{246978}$, $\frac{8282}{3087225}a^{11}-\frac{34133}{2058150}a^{10}+\frac{348089}{6174450}a^{9}-\frac{177887}{3087225}a^{8}-\frac{82253}{686050}a^{7}+\frac{247826}{617445}a^{6}+\frac{783973}{6174450}a^{5}-\frac{1270657}{686050}a^{4}+\frac{8711594}{3087225}a^{3}+\frac{262807}{1029075}a^{2}-\frac{3801409}{1029075}a+\frac{234194}{123489}$, $\frac{1084927}{6174450}a^{11}-\frac{1785569}{2058150}a^{10}+\frac{17077487}{6174450}a^{9}-\frac{5005181}{3087225}a^{8}-\frac{5051366}{1029075}a^{7}+\frac{6535838}{617445}a^{6}+\frac{131704039}{6174450}a^{5}-\frac{142222103}{2058150}a^{4}+\frac{502202779}{6174450}a^{3}-\frac{8635409}{1029075}a^{2}+\frac{26460031}{343025}a-\frac{12680356}{123489}$, $\frac{99541}{2058150}a^{11}-\frac{735694}{3087225}a^{10}+\frac{2356664}{3087225}a^{9}-\frac{1398754}{3087225}a^{8}-\frac{1353289}{1029075}a^{7}+\frac{1201043}{411630}a^{6}+\frac{17969368}{3087225}a^{5}-\frac{13039809}{686050}a^{4}+\frac{15366389}{686050}a^{3}-\frac{19001711}{6174450}a^{2}+\frac{131342707}{6174450}a-\frac{3719695}{123489}$, $\frac{24823}{686050}a^{11}-\frac{1132627}{6174450}a^{10}+\frac{1812496}{3087225}a^{9}-\frac{1212071}{3087225}a^{8}-\frac{1042186}{1029075}a^{7}+\frac{458461}{205815}a^{6}+\frac{12916937}{3087225}a^{5}-\frac{30321383}{2058150}a^{4}+\frac{35680663}{2058150}a^{3}-\frac{9461582}{3087225}a^{2}+\frac{99038543}{6174450}a-\frac{2779454}{123489}$
|
| |
| Regulator: | \( 7696.04332288 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 7696.04332288 \cdot 3}{6\cdot\sqrt{131621703842267136}}\cr\approx \mathstrut & 0.652608857678 \end{aligned}\]
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\), 6.2.362797056.3 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 36 |
| Degree 6 sibling: | 6.2.362797056.3 |
| Degree 9 sibling: | 9.1.9521245937664.11 |
| Degree 18 siblings: | deg 18, deg 18, deg 18 |
| Minimal sibling: | 6.2.362797056.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{6}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.22a1.1 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ |
|
\(3\)
| 3.1.6.11a1.11 | $x^{6} + 9 x^{3} + 9 x^{2} + 9 x + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $$[2, \frac{5}{2}]_{2}$$ |
| 3.1.6.11a1.11 | $x^{6} + 9 x^{3} + 9 x^{2} + 9 x + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $$[2, \frac{5}{2}]_{2}$$ |