Normalized defining polynomial
\( x^{12} - 18x^{10} + 136x^{8} - 548x^{6} + 1228x^{4} - 1432x^{2} + 676 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(10453488727228416\)
\(\medspace = 2^{22}\cdot 3^{6}\cdot 43^{4}\)
|
| |
| Root discriminant: | \(21.62\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}43^{2/3}\approx 75.75789922542675$ | ||
| Ramified primes: |
\(2\), \(3\), \(43\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_6$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}, \sqrt{-3})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{10}-\frac{1}{2}a^{4}$, $\frac{1}{52}a^{11}-\frac{5}{52}a^{9}+\frac{3}{26}a^{7}-\frac{1}{26}a^{5}+\frac{3}{26}a^{3}+\frac{6}{13}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( \frac{1}{4} a^{8} - 3 a^{6} + 14 a^{4} - \frac{59}{2} a^{2} + 23 \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{9}{52}a^{11}+\frac{34}{13}a^{9}-\frac{1}{4}a^{8}-\frac{417}{26}a^{7}+3a^{6}+\frac{1283}{26}a^{5}-14a^{4}-\frac{969}{13}a^{3}+\frac{59}{2}a^{2}+\frac{557}{13}a-21$, $\frac{1}{13}a^{11}+\frac{18}{13}a^{9}-\frac{1}{4}a^{8}-\frac{259}{26}a^{7}+\frac{7}{2}a^{6}+\frac{470}{13}a^{5}-19a^{4}-\frac{864}{13}a^{3}+\frac{93}{2}a^{2}+\frac{639}{13}a-42$, $\frac{3}{13}a^{11}-\frac{1}{4}a^{10}+\frac{95}{26}a^{9}+\frac{15}{4}a^{8}-\frac{621}{26}a^{7}-\frac{47}{2}a^{6}+\frac{1033}{13}a^{5}+\frac{151}{2}a^{4}-\frac{1721}{13}a^{3}-\frac{245}{2}a^{2}+\frac{1111}{13}a+78$, $\frac{1}{4}a^{8}-\frac{7}{2}a^{6}+19a^{4}-\frac{95}{2}a^{2}+45$, $\frac{1}{2}a^{10}+7a^{8}-\frac{79}{2}a^{6}+110a^{4}-146a^{2}+74$
|
| |
| Regulator: | \( 2787.1636304529407 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 2787.1636304529407 \cdot 1}{6\cdot\sqrt{10453488727228416}}\cr\approx \mathstrut & 0.279550194282901 \end{aligned}\]
Galois group
$C_6\times S_3$ (as 12T18):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $C_6\times S_3$ |
| Character table for $C_6\times S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\), 6.0.798768.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.22a1.1 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ |
|
\(3\)
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(43\)
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 43.1.3.2a1.1 | $x^{3} + 43$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 43.1.3.2a1.1 | $x^{3} + 43$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |